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Abstract: Beige or brite (brown-in-white) adipocytes 
are present in white adipose tissue (WAT) and have a 
white fat-like phenotype that when stimulated acquires 
a brown fat-like phenotype, leading to increased ther-
mogenesis. This phenomenon is known as browning 
and is more likely to occur in subcutaneous fat depots. 
Browning involves the expression of many transcription 
factors, such as PR domain containing 16 (PRDM16) and 
peroxisome proliferator-activated receptor (PPAR)-γ, and 
of uncoupling protein (UCP)-1, which is the hallmark of 
thermogenesis. Recent papers pointed that browning 
can occur in the WAT of humans, with beneficial meta-
bolic effects. This fact indicates that these cells can be 
targeted to treat a range of diseases, with both phar-
macological and nutritional activators. Pharmacologi-
cal approaches to induce browning include the use of 
PPAR-α agonist, adrenergic receptor stimulation, thy-
roid hormone administration, irisin and FGF21 induc-
tion. Most of them act through the induction of PPAR-γ 
coactivator (PGC) 1-α and the consequent mitochondrial 
biogenesis and UCP1 induction. About the nutritional 
inducers, several compounds have been described with 
multiple mechanisms of action. Some of these activators 
include specific amino acids restriction, capsaicin, bile 
acids, Resveratrol, and retinoic acid. Besides that, some 
classes of lipids, as well as many plant extracts, have 
also been implicated in the browning of WAT. In conclu-
sion, the discovery of browning in human WAT opens the 
possibility to target the adipose tissue to fight a range of 

diseases. Studies have arisen showing promising results 
and bringing new opportunities in thermogenesis and 
obesity control.

Keywords: brite adipocytes; browning; browning induc-
tion; white adipose tissue; UCP-1.

Introduction
Beige or brite (brown-in-white) adipocytes were newly 
reported as adipocytes located in the white adipose 
tissue (WAT), but that resemble the brown adipocytes 
phenotype. In the basal state, brite adipocytes act as 
white adipocytes, but under the adequate stimulus 
they  might transform into brown-like adipocytes, in 
a process called “browning” [1]. Recent studies indi-
cated that human brown adipose tissue (BAT) is a 
brite adipocyte that acquired a brown-like phenotype 
[2] and that this conversion has beneficial metabolic 
consequences [3].

The subcutaneous depots of WAT are the most 
common location for browning as these adipocytes are 
predominantly smaller and have a greater potential to 
differentiate [4]. The ectopic expression of uncoupling 
protein 1 (UCP1) and PR domain containing 16 (PRDM16) 
are consistent to identify the presence of brite adipocytes 
within the white adipocytes [5, 6].

In the last years, a wide variety of pharmacological 
and nutritional compounds have been studied as agents 
of browning in humans and experimental models. In the 
present study, we focused on discussing recent in vitro 
and in vivo findings, though some problems in translating 
animals to human data exist [7].

Characterization of the brite/beige 
adipocyte
The adipose tissue is composed mainly by adipocytes, 
which are predominantly white adipocytes in the WAT, 
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and brown adipocytes in the BAT. Consequently, WAT and 
BAT have different structures and biological roles. White 
adipocytes have a single large lipid droplet occupying 
most of the cell volume with few mitochondria, dislocating 
the nucleus peripherally. Brown adipocytes are polygonal 
cells containing several small lipid droplets (therefore, 
called multilocular adipose tissue), with a central nucleus 
surrounded by a clear cytoplasm and large amounts of 
mitochondria [8, 9] (Figure 1).

Also, WAT and BAT have different origins and pro-
genitor cells, and many adipogenesis mediators [10]. 
WAT is found throughout the body, being divided into 
visceral (around organs – mesenteric, perigonadal, 
omental) and subcutaneous (under the skin – ingui-
nal) depots. BAT is found in specific regions that com-
prises interscapular, subscapular, axillary, perirenal 
and periaortic regions in rodents, and cervical, supra-
clavicular, paravertebral, mediastinal and perirenal 
regions in humans [11]. Also, WAT represents the main 
energy reservoir of the body, while BAT is character-
ized by energy dissipation through thermogenesis. Both 
WAT and BAT function as endocrine tissues, signaling 

to other organs through adipokines (WAT) and batokines 
(BAT) [12, 13].

Brite adipocytes were newly reported as a type of 
adipocytes set in WAT, but resembling brown adipocytes 
phenotype. In the basal state, brite adipocytes act as 
white adipocytes, but under the adequate stimulus they 
might transform into brown-like adipocytes [1]. The origin 
of the brite adipocytes is still a matter of debate. When 
WAT is stimulated, a subset of cells may acquire a thermo-
genic phenotype (i.e. brown fat-like phenotype), without 
sharing the genetic markers of BAT, having a single 
developmental origin and molecular characteristics [14]. 
Indeed, brite adipocytes have a gene expression pattern 
different of WAT and BAT [1]. The key features of WAT, BAT 
and brite adipocytes are detailed in Table 1.

It is relevant information that humans may have 
activation of BAT [15, 16]. Recent studies have indicated 
that human BAT is a brite adipocyte that was originally 
white, but, under stimulation acquired a brown-like 
phenotype [2]. Thus, human white adipocytes can be 
converted into brite adipocytes with beneficial meta-
bolic consequences [3].

Figure 1: Adipocytes.
White adipocytes have large lipid droplets, surrounded by little cytoplasm and a decentralized nucleus. Brown adipocytes have a polygonal 
appearance with multiple small lipid droplets and a centralized nucleus surrounded by a clear cytoplasm. Brite adipocytes are located in 
white adipose tissue resembling white adipocytes that under certain stimuli acquire a brown fat-like phenotype (tissues from C57BL/6 mice: 
light microscopy with hematoxylin and eosin stain or immunofluorescence and confocal microscopy marked with anti-uncoupling protein 
(UCP) 1 antibody). Same magnification, bar calibration = 50 μm.
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Molecular pathways related to 
browning and thermogenesis

The browning phenomenon gained relevance among 
scientific community when cold-activated thermogenic 
adipocytes were accidentally identified in patients sub-
jected to positron emission tomography (PET) CT scans 
in Sweden [17]. These adipocytes, observed in the supra-
clavicular region, resembled the brite adipocytes seen in 
mouse models [18].

Before that observation, we believed that thermo-
genesis could not produce a significant body mass loss in 
adults [19]. However, in recent years brite adipocytes are 
considered a metabolic benefit: only 63 g of full-activated 
thermogenic adipocytes can burn approximately 4  kg of 
WAT a year (an obese adult – BMI > 30 kg/m² – has 27 kg of 
WAT on average) [20, 21].

Subcutaneous adipocytes are more likely to undergo 
browning than visceral adipocytes because subcutaneous 
adipocytes are predominantly smaller and have a greater 
potential to differentiate [4]. The various stimuli capable 
of inducing browning are still in discussion. However, 
there is a consensus that the ectopic expression of UCP1 
and PRDM16 is consistent to identify the presence of brite 
adipocytes within the white adipocytes [5, 6].

While UCP1 is the protein that performs thermogen-
esis itself [22], PRDM16 is a stimulus responsible for main-
taining the brite adipocyte phenotype. Although PRDM16 

is a common gene of BAT, brown adipocytes can perform 
thermogenesis even with a low expression of PRDM16. 
However, as recently shown, brite adipocytes may turn 
into white adipocytes again when the PRDM16 expression 
is low [23, 24]. Thus, browning is a reversible phenome-
non and PRDM16 is a pivotal molecule when it comes to 
browning induction and thermogenic maintenance of the 
brite adipocytes [24].

Experimental evidence and clinical reports agree that 
sustained adrenergic stimulation is crucial to triggering 
the thermogenesis pathway [25]. An abundant innervation 
has always been attributed to BAT, but WAT is also signifi-
cantly affected by this stimulus [26]. Viral tracking tech-
niques have revealed an intricate sympathetic innervation 
in both visceral and subcutaneous WAT (sWAT) [27].

Beta-3 adrenergic receptor (β-3AR) is the main 
receptor involved in the thermogenesis pathway [15]. 
The p38  mitogen-activated protein kinase (p38 MAPK) 
stimulates the activating transcription factor 2 (ATF-2), 
driving the peroxisome proliferator-activated receptor 
gamma coactivator (PGC) 1-α transcription [28]. Peroxi-
some proliferator-activated receptor gamma coactivator 
1 alpha (PGC1-α) has got significant downstream effects 
promoting mitochondrial biogenesis and peroxisome 
proliferator-activated receptors (PPAR) activation [29]. 
PGC1-α activates nuclear respiratory factor 1 (NRF1), 
which communicates the nucleus with the mitochondrion 
and triggers mitochondrial replication by the activation of 
the mitochondrial transcription factor A (TFAM) [30].

Table 1: Comparisons between white, brown and “brite” adipose tissue.

Data   WAT   BAT   Brite

Origin   Myf5- cells   Myf5+ cells   Myf5- cells (differentiation or 
transdifferentiation)

Function   Energy storage and endocrine 
tissue

  Thermogenesis and endocrine 
tissue

  Adaptive thermogenesis (under 
stimuli)

Phenotype   White-fat phenotype   Brown-fat phenotype   White-fat phenotype that acquires a 
brown-fat phenotype under stimuli

Mitochondria   Low   Abundant   Present (upon stimulation)
UCP-1 expression  Absent   Present   Present (under stimuli)
Protein markers   LPL, leptin, adiponectin   PGC1α, PRDM16   CD137, PRDM16, Tmem26
Pharmacological 
induction

  PPAR agonists, renin-
angiotensin system blockers, 
thiazolidinediones, among others

  Sympathomimetic drugs, thyroid 
hormones, thiazolidinediones, 
hormones like FGF21 and irisin, 
among others

  Adrenergic receptor agonist, thyroid 
hormones, PPARα agonist, FGF21, 
irisin, BMP7, BMP8, AMPK activator, 
leptin, insulin, among others

Nutritional 
induction

  n-3 PUFA, polyphenols, vitamin D, 
vitamin E, vitamin A, carotenoids, 
among others

  PUFA, especially n-3 PUFA, bile 
acids, among others

  Amino acid restriction, capsaicin, 
bile acids, n-3 PUFA, retinoic acid, 
among others

AMPK, AMP-activated protein kinase; BAT, brown adipose tissue; BMP, bone morphogenetic protein; CD137, cluster of differentiation 137; 
FGF21, fibroblast growth factor 21; LPL, lipoprotein lipase; Myf5, myogenic regulatory factor 5; PGC1alpha, PPAR coactivator 1 α; PPAR, 
peroxisome proliferator-activated receptor; PRDM16, PRD1-BF-1-RIZ1 homologous domain protein containing protein-16; PUFA, polyunsatu-
rated fatty acids; Tmem26, transmembrane protein 26; UCP1, uncoupling protein 1; WAT, white adipose tissue.
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UCP1, the thermogenesis effector, is in the inner 
mitochondrial membrane, indicating that mitochondrial 
biogenesis is essential to brite adipocytes induction. 
Moreover, mitochondria are widespread in the larger cyto-
plasm of the thermogenic-activated brite adipocytes [31, 
32]. All PPAR isoforms (α, β, and γ) have been associated 
with UCP1 transcription [33, 34].

PPAR-γ orchestrates UCP1 transcription during brown 
adipocytes differentiation, but it is repressed in mature 
activated brown adipocytes [35]. After the differentiation, 
PPAR-α controls UCP1 levels in mature brown adipocytes 
[34]. Even though PPAR-γ plays a role in browning, the PPAR-
α seems to be indispensable in activating the transcription 
of genes related to lipid oxidation carnitine palmitoyltrans-
ferase 1 (CPT1), which triggers β-oxidation and allows an 
unilocular adipocyte turn into a multilocular adipocyte [36].

As mentioned, PRDM16 is essential for brite adipocyte 
maintenance, but it also influences the browning process. 
Once again, PPAR-α controls the transcription of this 
essential gene, which interacts with PGC1-α to provide the 
machinery necessary for the transdifferentiation or differ-
entiation of the brite adipocyte [29].

Today we accept that brite adipocytes stem from 
mature white adipocyte [low cluster of differentiation 
137 (CD137), MYF5-cell progenitor], which under specific 
stimuli acquire a brown-like phenotype, or still from a 
beige preadipocyte (high CD137, MYF5-cell progenitor), 
which differentiates into a multilocular cell capable of 
performing thermogenesis. The latter originates from a 
lineage that differs from WAT [37, 38].

Irisin, a newly described adipokine, has a role in the 
differentiation of the preadipocyte in mature beige adi-
pocyte [6], which express the cluster of differentiation 
(CD) 137, a beige-lineage selective cell surface protein. 
The PPAR-α stimulation is accompanied by a high irisin 
gene level. Also, irisin acts via PGC1-α to enhance UCP1 
expression, which is also a PPAR-α target gene, maximiz-
ing thermogenesis [39, 40]. The crosstalk between differ-
ent pathways controlled by PPAR-α suggests that PPAR-α 
might orchestrate thermogenesis in the mature brite adi-
pocytes and has potential to trigger Browning, though the 
way (transdifferentiation or differentiation) remains to be 
unraveled. Figure 2 summarizes the main pathways out-
lined in this section.

Figure 2: Pathways related to thermogenesis and browning.
Beta 3-adrenergic receptor stimulation leads to PGC1 induction, which drives PPAR activation and mitochondrial biogenesis. These stimuli 
allow the white adipocyte to acquire brown adipocyte features in an event called “browning”, where the enhanced expression of PRDM16 
and UCP1 are considered as hallmarks for thermogenic activity in the new beige/brite adipocyte (A). An interaction between PPAR-α and 
irisin stimulates browning as it favors UCP1 and PRDM16 great expressions. Conversely, under reduced expression of PRDM16 and UCP1, the 
brite adipocyte can turn in a white adipocyte, showing the reversible nature of browning phenomenon (B).
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Pharmacological induction of 
Browning
Many pharmacological agents have been linked to a 
facilitation of brite/beige phenotype acquisition by white 
adipocytes [41]. Despite being a recent issue, we aimed 
to describe in this section the main pharmacological 
approaches related to WAT browning as well as the endo
genous signals activated by each one of them.

An adrenergic stimulation is essential to trigger 
thermogenesis. Thus, many strategies to induce WAT 
browning, converge to the stimulation of β-3AR, with the 
consequent enhanced lipolysis, which is followed by a 
greater capacity for lipid oxidation and thermogenesis 
in the mitochondria [42]. Chronic treatment with β-3AR 
agonist induces ectopic UCP1 expression in WAT coupled 
with a significant mitochondrial enhancement. Also, a 
moderate elevation of β-3AR expression is associated with 
a significant body mass loss due to WAT browning [43], 
while a β-3AR depletion in knockout mice reduce WAT 
multilocular adipocytes and UCP1 expression [42]. The 
proposed mechanisms are related to the cyclic adeno-
sine monophosphate (c-AMP)-dependent protein kinase 
A (PKA) activation and the activation of its target gene 
p38 MAPK with downstream effects such as PGC1-α and 
PPAR-α activation [44].

A selective PPAR-α activation by fenofibrate makes 
WAT browning in a diet-induced obesity model [45, 46], 
with a consequent reduction in the body mass and hepatic 
steatosis, implying that thermogenesis can metabolize the 
excessive free fatty acids from lipolysis, mitigating their 
deposition as fat droplets in the liver [47, 48].

Along with PPAR agonists, the chronic use of AMP-
activated protein kinase (AMPK) activators ended up in 
increased energy expenditure and mitochondrial biogen-
esis, without a great impact on ectopic UCP1 expression 
[49]. Although AMPK activators potentially may enhance 
PGC1-α, the effects on WAT browning is controversial 
and seem to be species-dependent. The increased UCP1 
expression in gonadal white adipocytes has been identi-
fied in rats under a long-term treatment with the AMPK 
activator 5-Aminoimidazole-4-carboxamide ribonucleo-
side (AICAR) [49].

Irisin might explain the reason why AMPK activators 
do not always produce WAT browning. This adipokine 
relies on PGC1-α to trigger WAT browning [1, 39]. Moderate 
augmentation in irisin level complies with ectopic expres-
sion of UCP1 in WAT, followed by obesity and insulin 
resistance tackling [39]. It seems that the enhanced PPAR-
α expression coupled with high levels of irisin acts as an 

important surrogate of WAT browning [39, 46]. Of note, 
exercise seems to stimulate WAT browning through an 
irisin-dependent pathway as irisin is similarly secreted by 
the skeletal muscles (being also classified as a myokine) 
[39, 40]. However, it is likely that muscle secretion does 
not influence WAT browning significantly as sweat pro-
duction does [50].

The FGF21 is a metabolic regulator. It is secreted pre-
dominantly by the liver, but is also secreted by BAT and 
sWAT after a suitable stimulation (cold exposure or adren-
ergic stimulation) [51, 52]. Paracrine and autocrine signals 
induce UCP1 and other thermogenic genes through a PGC-
α-dependent mechanism in FGF21-treated mice, being 
more relevant in sWAT than in BAT [52]. A possible interac-
tion with irisin is thought to cause increased oxygen con-
sumption by adipocytes, which might explain the reduced 
fat depots following FGF21 treatment [51].

Another synergism happens between natriuretic 
peptides and β-3AR stimulation. Formerly regarded 
as a hormone involved in blood pressure regulation 
through the salt excretion control and renin-angioten-
sin system modulation, the atrial natriuretic peptide 
(ANP) is released after exercise and yields increased 
UCP1 gene and protein levels in human adipocytes in 
vitro [53]. Energy uncoupling increase by ANP does not 
rely on adrenergic stimulation, but is maximized by its 
[27]. A significant overlapping between PKA and cyclic 
guanosine monophosphate (cGMP)-dependent protein 
kinase G (PKG) downstream effects has been described 
and this observation is possibly the reason why ANP 
stimulates lipolysis in a similar degree of adrenergic 
stimulation [54].

The nicotine is strongly associated with a decrease 
in body mass, a small food intake, an increase of both 
lipolysis and energy expenditure [55]. However, cigarette 
smoking did not induce browning in sWAT [56], whereas 
treatment with nicotine caused increased UCP1 gene 
levels by multilocular adipocytes in WAT [57].

Bone morphogenetic proteins (BMPs) play different 
roles in adipocyte differentiation and physiology [58]. 
BMP-7 is associated with enhanced lipid accumulation, 
UCP1 expression and mitochondrial density in brown 
adipocytes [59], and browning of murine and human sWAT 
in vitro [60]. Also, BMP-7  stimulates PRDM16, which, in 
turn, induces PGC1-α and its downstream effects related 
to mitochondrial biogenesis and UCP1 activity [61].

BMP-8 acts centrally to intensify the adrenergic sign-
aling, an important triggering stimulus of both browning 
and thermogenesis [62]. Increased BMP-8 gene levels were 
detected in obese mice treated with PPAR-α agonist, and 
BMP-8 augmentation was proportional to β-3AR and the 
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UCP-1 rise [46]. Conversely, mice lacking BMP-8 showed a 
greater susceptibility to diet-induced obesity [62].

The adipoinsular axis refers to the interplay 
between insulin and leptin to control appetite and 
glucose handling [63]. Insulin and leptin function syn-
ergistically in hypothalamic neurons to promote WAT 
browning. The deletion of tyrosine protein phosphatase 
1B (PTP1B) and tyrosine protein phosphatase nonrecep-
tor type 2 (TCPTP) augment insulin and leptin signaling 
in POMC neurons, which a greater energy expenditure 
and brite adipocytes in WAT [64]. The infusion of leptin 
and insulin into the central nervous system yielded acti-
vated POMC neurons and put forward a central control 
of WAT browning [64, 65]. Also, the thyroid hormone 
has an influence on WAT plasticity. After treatment with 
T3 (triiodothyronine) human adipocytes differentiate 
from multipotent adipose-derived stem cells, acquiring 
a multilocular aspect, enhancing mitochondrial density 
and UCP1 expression [66].

Nutritional induction of Browning
Nutritional elements have effects centrally in the brain, 
like some amino acids restriction and malnutrition, and 
capsaicin. Capsaicin is an ingredient of hot pepper, widely 
used as a spice in food products. Capsaicin is recognized as 
a target to treat obesity and adipogenesis because it binds 
to the TRPV1 protein activating neurons, increasing cat-
echolamine secretion and thermogenesis. Capsaicin gave 
to rats fed a high-fat diet led to an increased UCP1 mRNA 
expression in WAT [67]. Low doses of capsaicin induce a 
brite phenotype in differentiating 3T3-L1 preadipocytes 
[68]. Also, Capsaicin activates TRPV1 channels, promot-
ing browning of WAT that counteracts obesity in mice [69].

Dietary methionine restriction induces an increase 
in energy expenditure with a rise in UCP1 expression in 
WAT [70], even in ob/ob mice [71]. The dietary methionine 
restriction appears to increase UCP1 and energy expendi-
ture through increased nervous system stimulation of 
adipose tissue [72]. In maternal rodent undernutrition, 
there is an enhancement of UCP1 gene expression in WAT 
of male offspring until postnatal day 21, but this effect is 
lost after weaning [73].

Fucoxanthin, a carotenoid from edible seaweeds 
can upregulate UCP1 expression in mice WAT [74], which 
could partially counteract obesity in KK-Ay mice [75]. 
These beneficial effects of fucoxanthin in WAT against 
obesity appear to be related to increases in the expression 
of β-3AR [76].

In diet-induced obesity in mice supplemented 
with the flavonoid luteolin, there is increased energy 
expenditure associated with upregulation of thermo-
genic genes (e.g. UCP1, PGC1-α, PPAR-α, among others) 
in sWAT. The effects of luteolin are mediated by AMPK/
PGC1-α signaling since AMPK inhibition ablated the 
effects [77].

Another potential nutrient is the amino acid Citrul-
line. Citrulline treatment of lean and diet-induced obese 
mice upregulated UCP1, PPAR-α, and PGC1-α in WAT, 
resulting in elevated thermogenesis accompanied by a 
reduced body fat mass [78].

The role of bile acids in upregulating thermogenesis 
was recently described. Bile acids are essential for lipid 
absorption in the intestine and may have an involvement 
in lipid metabolism [79]. There are effects of bile acids (i.e. 
cholic acid and chenodeoxycholic acid) on BAT increas-
ing energy expenditure and inducting UCP1-mediated 
thermogenesis [79, 80]. In WAT, stimulation of a bile acid 
sensor (farnesoid X receptor, FXR) by its agonist (FXR 
agonist fexaramine) promotes browning, opening a new 
therapeutic field [81]. At least in BAT, the mechanism of 
action of bile acid is mediated by G protein-coupled recep-
tor 5 (TGR5) [79].

Another well-studied browning inducer is Resvera-
trol, a polyphenol present in berries and grapes, among 
others. Resveratrol supplemented to mouse embryonic 
fibroblast-derived adipocytes elevated mRNA expression 
of UCP1 [82]. In vitro, Resveratrol increased gene and 
protein expressions of brown fat markers including UCP1, 
PRDM16, and PGC1-α in adipocytes [83, 84]. Resveratrol 
induces browning of WAT with UCP1 upregulation and 
enhancement of fatty acid oxidation in vivo, possibly by 
activating AMPK [83].

Some types of lipids [n-3 polyunsaturated fatty acids 
– (PUFA)] have the potential to induce browning. The n-3 
PUFA is related to a wide variety of beneficial effects in 
many diseases as immune, inflammatory, and cardiovas-
cular diseases, besides cancer, obesity, and the metabolic 
syndrome [85]. The eicosapentaenoic acid (EPA, one of 
the bioactive n-3 PUFA) can promote browning of subcu-
taneous adipocytes [86]. In accordance, fish oil (rich in n-3 
PUFA) given to mice induces browning of subcutaneous 
WAT, with the presence of several gene markers, including 
CD137 that is exclusive of brite cells [87].

Also, the conjugated linoleic acid (CLA) enhances 
UCP1 in obese ob/ob mice independently of increases in 
β-3AR, acting against fat deposition [88]. The CLA-induced 
UCP1 expression in WAT contributes to obesity reversion 
in a mechanism independent of PPAR-α [89]. The syn-
thetic fatty acid 2-hydroxyoleic acid given to rats resulted 
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in increased UCP1 expression in WAT, inducing body mass 
and fat mass losses [90].

The retinoic acid is the carboxylic acid form of 
vitamin A with action on several nuclear receptors. All-
trans retinoic acid induces UCP1 expression through its 
binding to the retinoic acid receptor in white rodent adi-
pocytes, independently of PGC1-α [91]. In obese mice, 
treatment with all-trans retinoic acid induces UCP1 
expression, through both retinoic acid receptor and 
PPAR-β/ƛ [92]. All-trans retinoic acid increases mice mul-
tilocular adipocytes in inguinal WAT, suggesting brown-
ing with concomitant increases in mRNA expression of 
UCP1, PPAR-α, PGC1-α, CPT-1, among others [93]. Also, 
mouse embryonic fibroblast-derived adipocytes expo-
sure to all-trans retinoic acid showed enhancement of 
UCP1  mRNA and protein expressions accompanied by 
increases in PRDM16 [94].

Other nutrients, including plant extracts, may have 
potential in inducing browning. For example, thymol 
(5-methyl-2-isopropylphenol), a natural monoterpene 
phenolic constituent of essential oils produced by plants 
such as thyme species, induces browning of 3T3-L1 adi-
pocytes, enhancing the expression of many brown fat 
specific markers [95]. On a diet-induced obese model, 
β-lapachone (a naphthoquinone) stimulates the brown-
ing of WAT, with higher UCP1 expression and lower body 
mass [96]. The black soybean seed coat extract, a poly-
phenol-rich food material, also elevates UCP1 protein 
expression in sWAT and reduces body mass with regulari-
zation of glucose intolerance [97]. Berberine, a naturally 
occurring plant alkaloid present in many Chinese herbal 
medicines, activates thermogenesis in WAT of db/db mice, 
with the browning of this tissue through AMPK and PGC1-
α signaling [98]. Lastly, artepillin C, a typical Brazilian 
Propolis-derived component, induces brown-like adipo-
cytes in mouse primary inguinal WAT-derived adipocytes 
due to activation of PPAR-γ and PRDM16  stabilization, 
independent of β3-adrenergic signaling [99].

Other metabolites may be added to the list of brown-
ing inducers. Among them, both lactate and the ketone 
body β-hydroxybutyrate were shown to increase UCP1 
expression in murine WAT cells, therefore promoting 
browning, possibly as a mechanism to alleviate redox 
pressure [100]. Besides that, rats given inorganic nitrate 
in drinking water showed expression of the brown adi-
pocytes genes and proteins and β-oxidation genes in 
WAT, increasing oxygen consumption. The mechanism of 
browning appears to be related to the reduction of nitrate 
to nitric oxide that in turns increase cGMP, activating PKG 
and, consequently, increasing the expression of PGC1-α 
and other key browning genes [101].

Cold adaptation: energy dissipation, 
non-shivering thermogenesis

The cold-induced thermogenesis can be either a non-
shivering thermogenesis (NST) or a shivering thermogene-
sis. Shivering is a repetitive contraction-relaxation process 
activated by repeated stimulation of the neuromuscular 
junction that leads to elevation of cytosolic Ca++ concen-
tration, thereby activating ATP hydrolysis to produce heat. 
During shivering, heat is primarily generated by the major 
ATP-utilizing enzymes, including Na+/K+ ATPase, myosin 
ATPase, and sarcoplasmic/endoplasmic reticulum Ca++ 
transport ATPase (SERCA) [102, 103]. In a cold environ-
ment, heat production increases by 10–30  W during the 
initial first minutes without any increase of muscle activ-
ity [104]. Later, extra heat is generated by involuntary 
contractions of skeletal muscles (shivering). Heat produc-
tion through muscle shivering is well known as the first 
line of defense to acute cold exposure. Acute exposure to 
cold triggers immediate responses with the dual purpose 
of minimizing heat loss and producing heat. Shiver-
ing occurs when the core and skin temperature surpass 
a certain threshold and may produce heat equivalent to 
about four times resting metabolism. There are vasocon-
striction and furred mammals undergo piloerection.

Heat production is initiated instantly by shivering, 
the direct form of facultative thermogenesis. Muscle con-
traction increases heat production. However, facultative 
shivering thermogenesis is a very high energy cost and 
disrupts activity [105]. Also, it is hence of limited value 
and rapidly replaced by non-shivering facultative ther-
mogenesis [106]. The facultative thermogenesis resides in 
another evolutionary homeostatic advancement to adapt 
to the cold, the BAT (Figure 3).

People who have adapted to cold environments show 
some resistance to the development of diabetes, possibly 
due to the maintenance of larger amounts of BAT [107]. 
Likewise, the extent of human BAT activity in patients is 
inversely associated with obesity, age and type II diabetes 
[108]. In a comparison of overweight and lean subjects on 
thermogenesis in response to mild cold, the increase in 
heat production in response to a mild cold stimulus was 
observed to be three times as large in lean subjects com-
pared with overweight subjects [104]. The mouse strains 
with higher thermogenic gene expression in WAT depots 
tended to be more resistant to obesity and insulin resist-
ance than those with lower levels [109].

We know now that skeletal muscle could serve as a 
place of non-shivering besides BAT in mammals, including 
humans. During cold acclimation, shivering is gradually 
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replaced by NST to save muscle and prevent muscle injury 
due to repetitive contractions during constant shivering 
[110]. Moreover, high-intensity shivering relies predomi-
nantly on muscle glycogen that can become limiting after 
a few hours [111].

The question is whether muscle will become a 
major site of NST when the BAT function is minimized 
in mice. The interscapular BAT (iBAT, which constitutes 
approximately 70% of total BAT) has been surgically 
removed, and mice exposed to prolonged cold (4° C) for 
nine days. Interestingly, the iBAT-ablated mice have main-
tained optimal body temperature (approximately 35–37° C) 
during the entire period of cold exposure. After four days 
in the cold, both sham controls and iBAT-ablated mice 
stopped shivering and resumed routine physical activity, 
indicating that they are cold-adapted. The iBAT-ablated 
mice showed higher oxygen consumption and decreased 
body mass and fat mass, showing a raised energy cost of 
cold adaptation. Moreover, the skeletal muscles in these 
mice underwent extensive remodeling of both the sarco-
plasmic reticulum and mitochondria, including alteration 
in the expression of the main components of Ca++ han-
dling and mitochondrial metabolism. The changes, along 
with increased sarcolipin expression, provide evidence 

for the recruitment of NST in skeletal muscle. Therefore, 
the skeletal muscle becomes the major site of NST when 
BAT activity is minimized [112]. The heat production in 
skeletal muscle is tightly associated with sarcolipin, a 
regulator of SERCA [113].

Expert opinion
The recent discovery that adult humans possess adi-
pocytes capable of performing thermogenesis opened 
the possibility to target new strategies to fight obesity 
and its comorbidities. Even though many studies have 
arisen, showing promising results and bringing new 
opportunities, the understanding of the browning phe-
nomenon and its metabolic effects configures a new 
field of study, with many questions to be answered.

Outlook
Browning is regarded as a new potential strategy to 
fight obesity. The experimental background provides a 
large body of evidence for body mass control, improved 
glucose handling and beneficial metabolic outcomes 
after the induction of brite adipocytes formation by 
nutritional or pharmacological approaches. The main 

challenge in the upcoming years will be to determine the 
actual impact of the brite adipocyte on human obesity as 
the translational potential of the experimental evidence 
remains to be unraveled.

Highlights
–– Browning is characterized by the brown-like pheno-

type acquisition by white adipocytes, mainly from 
subcutaneous depots;

–– The identification of brite adipocytes in humans chal-
lenged the understanding of the metabolic pathways 
involved in the browning;

–– Adrenergic stimulation is crucial to trigger browning 
as it initiates the thermogenic pathway;

–– PGC1-α is a key factor to drive browning as it stimulates 
mitochondrial biogenesis and UCP1 transcription;

–– PPAR-α activation is linked to irisin induction and 
enhanced UCP1 transcription and activity;

–– In the recent years, many nutritional compounds 
have been studied as promoters of browning in white 
adipose tissue;

Cold-induced thermogenesis

Shivering

Hight energy cost

Cold acclimation
Non-shivering
thermogenesis

in BAT

Skeletal muscle
contraction/relaxation

Figure 3: Cold adaptation: energy dissipation, non-shivering 
thermogenesis.
Heat production is initiated instantly by shivering, the direct form 
of facultative thermogenesis. Muscle contraction increases heat 
production. Skeletal muscle could serve as a site of non-shivering 
besides BAT in mammals, including humans. During cold acclima-
tion, shivering is gradually replaced by non-shivering thermogen-
esis because repetitive muscle contractions during constant shiver-
ing can cause muscle damage.
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–– Capsaicin, bile acids, Resveratrol, retinoic acid and 
some classes of lipids are among the most studied 
nutrients that induce browning;

–– The potential of brite adipocytes to counter obesity in 
humans remains to be unraveled.
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