

Bone Morphogenetic Proteins and Adipocyte Differentiation

Joslin Diabetes Center, Harvard Medical School, Boston, MA.
 Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL

Received 16th January © Cellscience 2007

Bone morphogenetic proteins (BMPs) regulate many processes during embryogenesis and morphogenesis. However, the role of this family of proteins in adipogenesis appears to be underappreciated in the field of developmental biology. In the past fifteen years, our concept of adipose tissue has undergone a radical transformation: initially viewed as an inert mass for energy storage, adipose tissue is now seen as an endocrine organ with an important role in the regulation of whole-body energy homeostasis. Interest in adipocyte differentiation has increased markedly in the past few years with major emphasis on transcriptional controls during adipocyte formation. Clearly, much remains to be learned about adipogenesis. In this review, we summarize recent progress on the roles of BMPs in adipogenesis in mesenchymal stem cells and committed preadipocytes, and ultimately their potential involvement in the regulation of energy metabolism.

Introduction

Obesity is a public health problem worldwide, which results from an imbalance between energy intake and expenditure. Adipose tissue plays an important role in the regulation of energy balance, thereby contributing to the development of obesity. Therefore, improved knowledge of adipocyte biology is urgently needed to counter the growing epidemic of obesity. The past two decades have seen much progress toward defining the transcriptional events controlling adipocyte differentiation (recently reviewed in (Otto & Lane, 2005; Farmer, 2006; Rosen & MacDougald, 2006)). However, relatively little is known about how extracellular signals regulate these processes. One group of proteins of great interest in studies of the regulation of adipose development is the bone morphogenetic proteins (BMPs).

Bone Morphogenetic Proteins

Discovery, members, receptors, and signal transduction

More than 55 years ago, Pierre Lacroix hypothesized that bone may contain a substance, called osteogenin, which could initiate bone growth (Lacroix, 1945). This hypothesis was later validated by Marshall Urist's seminal work, in which the demineralized and lyophilized segments of rabbit bone implanted intramuscularly were shown to induce formation of new bone(Urist, 1965). This bone induction process unfolds in a cascade that recapitulates most, if not all, of the events occurring during development of the embryonic skeleton (Olsen *et al.*, 2000; Reddi, 1998). These experiments, performed in the 1960s, were followed by the cloning

of the first BMPs more than 20 years later, and the demonstration that these factors could reproduce the bone-forming activity of Urist's bone extracts (Reddi, 1998; Reddi, 1997). The amino acid sequences revealed homology to transforming growth factor (TGF)-β1, suggesting that BMPs and osteogenin are members of the TGF-β superfamily. In their landmark work, Wozney and colleagues cloned BMP-2, BMP-2B (a.k.a., BMP-4) and BMP-3 (also called osteogenin; Wozney *et al.*, 1988). Subsequently, Ozkaynak and colleagues cloned Osteogenic protein-1 and -2 (OP-1 or BMP-7, and OP-2 or BMP-8; Ozkaynak *et al.*, 1992). Comprising an ever-growing number of identified homologues, the BMPs represent almost one third of the TGF-β superfamily, with more than 30 members already described (Reddi, 1998; Reddi, 1997; Hogan, 1996; Luo *et al.*, 2005). The members of this subfamily of secreted molecules are termed BMPs, osteogenic proteins (OPs), cartilage-derived morphogenetic proteins (CDMPs), or growth and differentiation factors (GDFs). They have been classified into several subgroups according to their structural similarities (Figure 1).

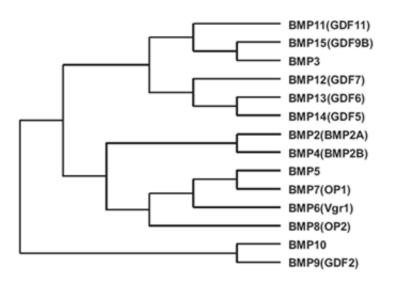


Figure 1. Phylogenetic classification of the 14 types of human BMPs.

BMPs activate a signaling cascade that regulates cell proliferation and differentiation. BMPs are dimeric molecules and their conformation is critical for biological action (Reddi, 1998; Rosen *et al.*, 1996; Wozney, 1998; Karsenty, 2000). Mature BMP monomers consist of about 120 amino acids, with seven canonical cysteine residues. There are three intrachain disulfides and one interchain disulfide bond. The cysteine knot is the critical central core of the BMP molecule. Upon dimerization, the two subunits are

proteolytically cleaved at a consensus Arg-X-X-Arg site to yield carboxy-terminal mature dimers (Wozney et al., 1988; Israel et al., 1992; Kingsley, 1994). This cleavage, which is thought to occur before secretion, is mediated by subtilisin-like convertases (Cui et al., 1998; Constam & Robertson, 1999). It was recently shown that a downstream sequence adjacent to the cleavage site determines the cleavage efficiency, while the Nterminal region controls the stability of the processed mature protein (Constam & Robertson, 1999). Analysis of the crystal structure of two TGF-B family members, TGF-B2 and BMP-7, has revealed that the core of the monomer is a cystine knot involving six cysteine residues that are invariably spaced in the C-terminal region of all family members (Schlunegger & Grutter, 1992; Griffith et al., 1996). The mature BMPs fulfill their signaling function by binding to a heterodimeric complex of two transmembrane serine-threonine kinase receptors, termed type I and type II (Hogan, 1996; Kingsley, 1994; Massague & Weis-Garcia, 1996). In vertebrates, seven type I receptors and five type II receptors have been found so far. Among these different isoforms, three type I receptors (BMPR-Ia/ALK-3, BMPR-Ib/ALK-6, and ALK-2) and three type II receptors (BMPR-II, ActR-2a, and ActR-2b) mediate most of the effects of BMPs (Kishigami & Mishina, 2005). The kinase activity of the type II receptor is constitutive, while ligand binding is required for type I receptor kinase activation (Ruberte et al., 1995; Liu et al., 1995). Optimal ligand binding is achieved when both type I and type II receptors are present, although BMPs can bind to each of them weakly and subsequently recruit the second subunit. The specificity of signaling is primarily determined by type I receptors, whereas the specificity of ligand binding is established by combinations of both types of receptors. The activated receptor kinases subsequently phosphorylate transcriptional factors, called Smads. There are eight members in the Smad family (Massague & Chen, 2000). Phosphorylated Smads 1, 5 and 8 are functional mediators of BMP signaling in partnership with Smad 4, whereas Smad 6 and Smad 7 function as antagonists to inhibit TGF-B/ BMP superfamily signaling (Massague & Chen, 2000). The phosphorylated Smad 1 enters as a heteromeric complex with Smad 4 into the nucleus, where they activate the expression of target genes in concert with other co-activators (Massague, 1998; Heldin et al., 1997). BMPs also activate the p38 MAPK pathway via the MAPKKK cascade. This pathway leads to activation of the transcription factor ATF-2 and regulates expression of a variety of growth-related genes (reviewed in Canalis *et al.*, 2003). Interestingly, activation of p38MAPK by BMP-7 during epithelial cell morphogenesis is negatively regulated by Smad1 (Hu *et al.*, 2004), suggesting that cross-talk between these two signaling pathways may occur in certain cell types. (Figure 2).

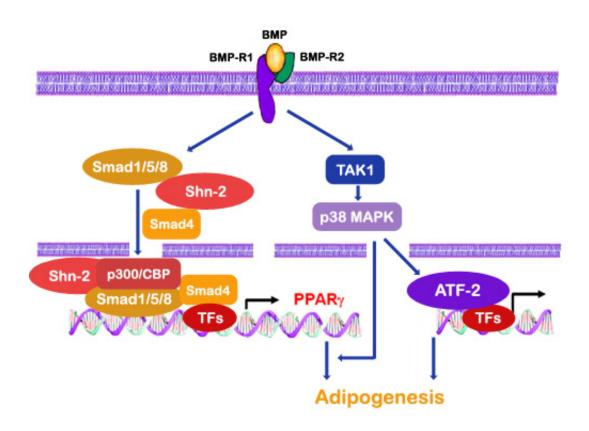


Figure 2. Molecular mechanisms utilized by BMPs to regulate adipogenesis.

Role of BMPs in development

Expression of BMPs is not restricted to developing skeleton but is also present in a wide range of tissues during development. Recent developmental and genetic studies have revealed their pleiotropic actions beyond bone morphogenesis. For example, BMP-2 expression can be detected in the mouse as early as 8.5 days postcoitum (dpc) in mesodermal cells of the amnion and chorion cells of the visceral endoderm, the allantois, and the lateral plate mesoderm underlying the head fold (Lyons et al., 1995; Zhang & Bradley, 1996; Schultheiss et al., 1997). From 8.5 to 9.5 dpc, BMP-2 is also expressed in the dorsal surface ectoderm underlying the neural tube (Dudley & Robertson, 1997). Around 9.5 and 10.5 dpc, its expression can be detected in the outer myocardial layer of the heart, in the apical ectodermal ridge, and in the zone of polarizing activity of the developing limb (Zhang & Bradley, 1996; Schultheiss et al., 1997; Dudley & Robertson, 1997; Lyons et al., 1990). Starting at 12.5 dpc, BMP-2 expression is also observed in the mesenchymal condensation that will give rise to the ribs and vertebrae, in the tooth buds, in the developing eye, and in the whisker follicles (Dudley & Robertson, 1997; Lyons et al., 1990; Lyons et al., 1989). Later during development, BMP-2 transcript can be observed in hypertrophic chondrocytes of long bones and in forming digits (Solloway et al., 1998). At the different stages of development, BMP-4 is expressed in the allantois, the amnion, the posterior part of the primitive streak, the neural tube area, the mesoderm around the developing gut, in the myocardium, the branchial arches, the developing eye, the otic vesicles, the neuroepithelium, and the dorsomedial telencephalon (Schultheiss et al., 1997; Dudley & Robertson, 1997). BMP-4 transcripts can also be detected in both the epithelium and mesenchyme tissues of the developing

limb bud and tooth bud (Jones et al., 1991; Furuta et al., 1997). BMP-6 has a broad pattern of expression also, as detected in the branchial pouch, the endodermal component of the visceral yolk sac, the roofplate of the neural tube, and the epithelium of the branchial pouch of the developing heart, as well as in the developing kidney and skin (Lyons et al., 1995; Lyons et al., 1989; Jones et al., 1991; Furuta et al., 1997). In the developing skeleton, BMP-6 is expressed preferentially in hypertrophic chondrocytes (Solloway et al., 1998; Iwasaki et al., 1997). Broad expression of BMP-7 is detected in the ectoderm of the periphery of the embryo, the surface ectoderm and the notochord, the neuroepithelium extending toward the prospective forebrain, and the developing gut. BMP-7 is also expressed in the atrial and ventricular chambers (Lyons et al., 1995; Schultheiss et al., 1997; Dudley & Robertson, 1997). During eye development, BMP-7 expression is detected in the surface ectoderm, the lens placode, and the optic vesicle (Lyons et al., 1995; Dudley & Robertson, 1997). BMP-7 is also expressed in the developing kidney, the Wolffian ducts, the ureteric bud epithelium, the pretubular aggregates and the podocytes of the glomeruli (Luo et al., 1995; Dudley et al., 1995). In the developing skeleton, BMP-7 is expressed in the developing limb, in the mesenchymal cells localized between the developing digits, and in the chondrogenic cells (Dudley & Robertson, 1997; Furuta et al., 1997; Luo et al., 1995; Dudley et al., 1995). Interestingly, several BMPs are not highly expressed in developing skeletal structures, but seem to be specifically expressed in particular tissues. For instance, BMP-15 is expressed in the ovaries, testis, and hypothalamus (McGrath et al., 1995; Dong et al., 1996), and BMP-10 expression appears to be restricted to the heart (Neuhaus et al., 1999). Finally, several BMPs are expressed more specifically in the developing nervous system, such as BMP-12 and BMP-11 (Lee, 1991; Lee et al., 1998; Nakashima et al., 1999). Thus, the expression of BMPs is often widespread and dynamic as development proceeds and is frequently localized in areas of epithelial-mesenchymal interaction, suggesting that BMPs could have a broad range of physiologic functions during embryonic and post-embryonic development.

Genetic disruptions of BMPs have resulted in various skeletal and extraskeletal abnormalities during development (Zhao, 2003; Table 1). Targeted disruption of BMP-2 in mice resulted in embryonic lethality (Zhang & Bradley, 1996). BMP-4 null animals exhibit no mesoderm induction, and gastrulation is impaired (Winnier et al., 1995). Homozygous BMP-6-deficient mice have no skeleton-patterning defect and only a mild delay of sternum ossification that could be traced to the formation of the mesenchymal condensations (Solloway et al., 1998). Targeted deletion of BMP-7 revealed critical roles for this molecule in kidney and eye development, in addition to patterning abnormalities of the ribs and a preaxial polydactyly of the hind limbs (Luo et al., 1995; Dudley et al., 1995). Interestingly, mutations in BMP-5 and BMP-14 were the first mutations to be identified in the BMP family, and the abnormalities they cause seemed to indicate that the wild-type proteins would function primarily if not exclusively in the developing skeleton. Kingsley et al. demonstrated that the gene mutated or deleted in the Short Ear mouse mutant was the BMP-5 gene (Kingsley et al., 1992). The brachypodism (bp) phenotype, characterized by a reduction in the length of several long bones and the replacement of two bones in most digits by a single skeletal element, is caused by frameshift mutations in the BMP-14 gene (Storm et al., 1994). BMP-14 has been shown to induce the formation of tendon and ligament structures in the classic subcutaneous implantation assay (Wolfman et al., 1997). Moreover, a mutation in the human BMP-14 gene has been implicated in two recessive chondrodysplasias: Hunter-Thompson chondrodysplasia and Grebe chondrodysplasia (Langer, Jr. et al., 1989; Thomas et al., 1996; Thomas et al., 1997). Mutations in the BMP-14 gene also cause autosomal dominant brachydactyly type C (Polinkovsky et al., 1997). Mice carrying null mutations in both BMP-14 and BMP-5 have skeletonpatterning defects that are not seen in any of the single mutants, but these abnormalities are extremely localized and do not disturb the differentiation of osteoblasts or chondrocytes (Storm & Kingsley, 1996). Mice carrying heterozygous mutations in both BMP-7 and BMP-4 have a higher frequency of rib cage and digit abnormalities than single heterozygotes (Katagiri et al., 1998), suggesting that BMP-7 and BMP-4 may act jointly in the formation of the affected mesenchymal condensations. BMP-5/-6 double mutant mice display only a slight exacerbation of the sternal defect present in the single mutants (Solloway et al., 1998). BMP-5/-7 double mutant mice die early during embryogenesis, prior to the onset of skeletogenesis. Genetic inactivation of other members of the BMP subfamily has revealed abnormalities in non-skeletal tissues (Zhao, 2003). Surprisingly, a recent gene deletion study has demonstrated that BMP-3 may act as an inhibitory regulator of bone density (Daluiski *et al.*, 2001). Thus, these collective data have demonstrated the functional heterogeneity of BMPs in skeletogenesis and non-skeletal tissue development (Table 1).

Effect of BMPs on lineage determination in mesenchymal stem cells

Stem cells are defined as progenitor cells that have the ability to perpetuate themselves through self-renewal and to generate mature cells of a particular tissue through differentiation. Mesenchymal stem cells (MSCs) are adherent bone marrow stromal cells or fibroblast-like cells that maintain their self-renewal stem-cell phenotype and give rise to differentiated progenitor cells belonging to the osteogenic, chondrogenic, adipogenic, myogenic and fibroblastic lineages (Prockop, 1997; Pittenger et al., 1999; Caplan & Bruder, 2001). Although primarily residing in within the bone marrow compartment (Caplan & Bruder, 2001; Friedenstein et al., 1966; Baksh et al., 2004), MSCs have been isolated from periosteum, trabecular bone, adipose tissue, synovium, skeletal muscle and deciduous teeth (Barry & Murphy, 2004). MSCs represent a very small fraction (e.g., 0.001-0.01%) of the total population of nucleated cells in the marrow (Pittenger et al., 1999). Currently, the biologic properties of MSCs, specifically with respect to their existence in the adult organism and their postulated biological niche, are not well understood. Nonetheless, several signaling pathways have been implicated in regulating stem cell self-renewal and lineage commitment (Molofsky et al., 2004; Wang & Wynshaw-Boris, 2004; Kleber & Sommer, 2004; Reya & Clevers, 2005). BMPs play important roles both in regulating cell proliferation and differentiation during development and in stem cell biology (He, 2005; Varga & Wrana, 2005; Zhang & Li, 2005). For example, BMPs are known to induce osteoblast differentiation of MSCs and subsequent bone formation (Reddi, 1998; Luo et al., 2005; Zhao, 2003; He, 2005; Urist, 1997; Cheng et al., 2003) by regulating a distinct set of downstream targets (Peng et al., 2003; Peng et al., 2004; Luo et al., 2004; Si et al., 2006).

Role of BMPs in Development of Adipose Tissue

Adipose tissue and obesity

For decades, adipose tissue was regarded as an inert mass for energy storage. However, this concept was radically revised in the past fifteen years. It is now known that adipose tissue not only serves as a fat depot, but also acts as a secretory/endocrine organ and plays a central role in the regulation of energy balance and thermoregulation. When energy input exceeds energy expenditure, the extra energy is stored in fat, leading to obesity. Modern sedentary life style and high-caloric diet have contributed to a high prevalence of obesity worldwide. According to the World Health Organization, more than 1 billion adults are overweight (body mass index (BMI) >25), and over 300 million rank as truly obese (BMI>30; Lev *et al.*, 1993; Friedman, 2000). In developed countries, obesity has become a major heath issue with serious social, psychological, and physiological consequences. Thus, improved understanding on all aspects of adipose biology is required to counter the growing epidemic of obesity.

The adipose lineage arises from a multipotent stem cell population of mesodermal origin. These precursor cells reside in the vascular stroma fraction of adipose tissue and become committed to the adipocyte lineage under appropriate developmental cues (Otto & Lane, 2005). At the cellular and molecular levels, the program of white adipocyte differentiation can be delineated into at least four stages that include (a) preconfluent proliferation; (b) confluence/growth arrest; (c) hormonal induction/clonal expansion; and (d) permanent growth arrest/terminal differentiation (Gregoire *et al.*, 1998; Cowherd *et al.*, 1999; Rosen, 2005). The latter part of this process is under complex transcriptional control involving CCAAT/enhancer-binding protein (C/EBP) δ , β , and α , peroxisome proliferator-activated receptor (PPAR) γ and other transcription factors that are induced in a specific sequence. This leads to the synthesis of proteins characteristic of a fully differentiated phenotype, such as fatty acid synthase and glucose transporter 4. This process is tightly controlled by positive and negative stimuli, such as hormones, nutrients and extracellular environment (Rangwala & Lazar, 2000;

Gregoire, 2001; Koutnikova & Auwerx, 2001; Camp et al., 2002; Farmer, 2006; Rosen & MacDougald, 2006).

There are two functionally different types of adipose tissue in mammals: white adipose tissue (WAT), which is the primary site of storage of triglycerides and release of fatty acids, and brown adipose tissue (BAT), which is specialized in thermogenic energy expenditure through the expression of uncoupling protein-1 (UCP-1; Figure 3). The developmental patterns of both tissues are quite distinct. BAT develops during fetal life and possesses all the features of mature tissue at birth when the requirements for non-shivering thermogenesis are needed. In contrast, development of WAT in rodents takes place primarily after birth and its mass increases during post-natal life (Nedergaard et al., 1986; Moulin et al., 2001b). Morphologically, BAT can be distinguished from WAT by multi-locular lipid inclusions and numerous well-developed mitochondria. Indeed, brown fat cells have among the highest mitochondrial density of any cell type in mammals (Lindberg et al., 1967). With regard to the developmental origins of brown vs. white fat, the current hypothesis favors that white and brown preadipocytes are already determined toward differentiation into one or the other adipose cell type (Klaus, 2004; Moulin et al., 2001a; Moulin et al., 2001b). However, adipose tissues are organs of great heterogeneity and plasticity (Cinti, 2005). Both environmental and nutritional stimuli can cause anatomical interconversions of BAT and WAT. For example, BAT is transformed into WAT during development and, conversely, WAT can be turned into BAT during cold adaptation or after pharmacological treatment, such as with \(\beta \) adrenoceptor agonist (Cousin et al., 1992; Himms-Hagen et al., 2000). Nevertheless, one of the remaining questions in adipocyte biology is how and when the differentiation of BAT vs. WAT is regulated and specified.

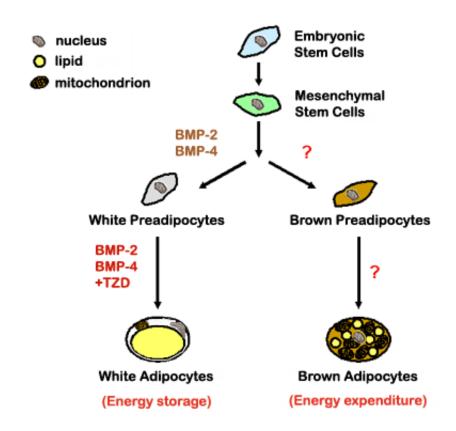


Figure 3. Role of BMPs in adipose development

Understanding the role of BMPs in adipose development from knockout animal models

In the past two decades, although genetic ablation approaches have revealed the important function of BMPs in different aspects of embryogenesis and organogenesis (Zhao, 2003), the specific effects of BMPs on adipose development can not be evaluated in these models, partly because of embryonic lethality in many of the KO animals or because severe defects in other tissues/organs obscure the adipose phenotype. Interestingly, however, several of the KO models with null mutations ablating either ligands, receptors, or downstream

components of the BMP signaling system showed defects in mesoderm formation. Since mesoderm is the primordium of adipose tissue, these results provide indirect evidence for a role for BMPs in the development of adipose tissue. For example, mice homozygous for BMPR-Ia died at embryonic day 8 due to a lack of mesoderm formation (Mishina *et al.*, 1995). Similar phenotypes were found in mice without functional BMPR-II (Beppu *et al.*, 2000). Of the different BMP receptor isoforms, BMPR-Ia is particularly interesting to adipocyte biology since it has been shown to specialize in adipocyte differentiation *in vitro* (Chen *et al.*, 1998). Other BMP KO mouse models with mesodermal defects include mutants of BMP-4 (Winnier *et al.*,

1995), Alk-2 (Gu et al., 1999; Mishina et al., 1999), Smad1 (Lechleider et al., 2001; Tremblay et al., 2001) and Smad5 (Chang et al., 1999; Yang et al., 1999; Chang & Matzuk, 2001). Although a good in vivo model to test the direct function of BMPs in development of adipose tissue is currently unavailable, several in vitro studies suggest important roles for BMPs in adipocyte differentiation, including effects of the dosage and type of BMP, the type of precursor cells and the presence of other regulators. Recently, Schnurri-2 (Shn-2) KO mice provided the first in vivo evidence that BMP signaling is critical for adipose development (Jin et al., 2006). BMP-2 induces nuclear translocation of Shn-2, where it functions as a scaffold to bring together other transcription factors to regulate adipogenesis. Shn-2 KO mice display reduced WAT, a tendency toward reduction of brown fat mass, and improved glucose tolerance and insulin sensitivity.

Induction of adipogenesis by BMPs in MSCs

As mentioned above, several studies have demonstrated important roles for BMPs in the control of commitment of stem cells to various lineages (Varga & Wrana, 2005; Zhang & Li, 2005). BMPs have been shown to have different roles in adipogenesis depending on the cell stage and the dosages of BMPs. In bone marrow stromal cells, the predominant effect of BMPs, in particular BMP-2, is to promote osteogenic differentiation and inhibit adipogenesis (Gimble et al., 1995; Chen et al., 2001; Pereira et al., 2002; Sciaudone et al., 2003; Song et al., 2003); however, low concentrations of BMPs modestly stimulate adipocyte differentiation (Chen et al., 2001). The effects of BMPs in the pluripotent mesenchymal cell line C3H10T1/2 are more complex and tightly controlled by the dosages and types of BMPs used in the system as well as by the presence of other extracellular and intracellular factors. The C3H10T1/2 cell line was established from 14- to 17-day-old C3H mouse embryos (Reznikoff et al., 1973). These cells display fibroblastic morphology and are functionally similar to mesenchymal stem cells, having the ability to differentiate into multiple lineages, including myoblast, adipocyte, chondrocyte, and osteoblast (Taylor & Jones, 1979; Wang et al., 1993; Ahrens et al., 1993). In these cells, low concentrations of BMP-2 and BMP-7 induce adipogenic differentiation whereas high concentrations promote differentiation toward chondrocyte and osteoblast (Wang et al., 1993; Asahina et al., 1996). Stable expression of cDNAs encoding different BMPs induces C3H10T1/2 cells to differentiate into osteogenic, chondrogenic and adipogenic lineages (Ahrens et al., 1993; Bachner et al., 1998). These BMPs appear to have differential effects on adipogenesis in this system, with BMP-4 having the greatest effect on induction of lipid accumulation and expression of markers for mature adipocytes (Bachner et al., 1998). Implantation of C3H10T1/2 cells treated with BMP-4 into nude mice results in the formation of a fat pad morphologically resembling WAT (Tang et al., 2004). Furthermore, in vitro studies demonstrate that BMP-4 is required for stable commitment of pluripotent C3H10T1/2 cells to the adipocyte lineage (Bowers et al., 2006) and this process involves downregulation of the expression of matrix metalloproteinase (MMP)-3 and MMP-13 (Otto et al., 2006). More recently, Taha et al. showed that BMP-4 could induce adipocyte differentiation in mouse embryonic stem cells (Taha et al., 2006).

Effect of BMPs on differentiation of committed preadipocytes

BMPs can also stimulate differentiation in committed preadipocytes. For example, BMP-2 promotes adipogenesis of the committed white preadipocyte lines 3T3-F442A and 3T3-L1 (Ji *et al.*, 2000; Rebbapragada *et al.*, 2003). Although these effects are very moderate, they can be enhanced when PPARγ ligand is present in the medium (Sottile & Seuwen, 2000). The synergistic effect of BMP-2 and PPARγ ligand may be explained, at least in part, by the ability of BMP-2 to upregulate PPARγ expression (Hata *et al.*, 2003). However, when given with retinoic acid, BMP-2 inhibits adipogenic differentiation and enhances osteogenic differentiation in 3T3-F442A cells (Skillington *et al.*, 2002). Thus, the current literature suggests an important role for BMPs in white adipocyte differentiation, especially in multipotent mesenchymal cells and to a lesser extent, in committed preadipocytes. However, knowledge of whether or not BMPs have an effect on the differentiation and function of brown fat is entirely lacking (Figure 3).

Effect of BMPs on lipid metabolism

Compared to the substantial amount of data concerning the roles of BMPs in all aspects of embryonic development and organogenesis, very little attention has been given to the potential role of BMPs in whole-body energy homeostasis. Using a proteomics approach, Witthuhn and Bernlohr demonstrated a significant increase of GDF-3/Vgr-2, which is a member of the BMP family, in the serum of mice lacking fatty acid binding protein-4 (FABP-4; Witthuhn & Bernlohr, 2001). The increase in serum GDF-3/Vgr-2 protein correlates with a marked increase in adipose GDF-3/Vgr-2 mRNA. FABP-4 is the major fatty acid binding protein in adipocytes and plays an important role in the regulation of lipid metabolism and energy balance. More recently, expression of BMP-3 was found to be elevated in mice that are more susceptible to high fat diet-induced obesity (DIO) compared to those resistant to DIO (Koza *et al.*, 2006). Together, these data suggest a link between adipocyte lipid metabolism and the expression of the BMP family of differentiation regulators.

Molecular mechanism by which BMPs regulate adipogenesis

As described above, there are at least two major signaling pathways by which BMPs elicit most of their biological functions. One pathway is the canonical Smad-dependent pathway, and a second pathway involves p38 MAPK activation. Both signaling machineries are present in both MSCs and preadipocytes. Hata *et al* reported that both Smad1 and p38 MAPK regulate the expression and activity of PPARγ during BMP-2-induced adipogenesis in C3H10T1/2 cells (Hata *et al.*, 2003). Recently, Jin *et al* report that the BMP signaling intermediate Shn-2 is required for adipogenesis *in vivo* and *in vitro* (Jin *et al.*, 2006). Shn-2 is a zinc finger-containing protein that enters the nucleus upon BMP-2 stimulation and, in cooperation with Smad1/4 and C/EBPα, induces PPARγ expression. In addition, ectopic expression of PPARγ can compensate for the loss of Shn-2 *in vitro*. A proposed model summarizing current knowledge on the molecular regulation of adipogenesis by BMPs is shown in Figure 2.

Conclusions and Perspectives

In addition to the pleiotropic effects of BMPs on different aspects of embryonic development and organogenesis, BMPs also play important roles in adipocyte differentiation. Although progress in understanding the molecular mechanisms by which BMPs regulate adipogenesis has been made, there are several questions remaining to be answered to fully understand the role of BMPs in these processes. Of particular interest, do BMPs also play a role in the regulation of brown adipogenesis? Do different BMPs have differential effects on brown vs. white fat differentiation? How is the specificity of BMP-receptor signaling achieved? What are the contributions of the different signaling pathways in the complex transcriptional cascade leading to adipogenesis?

Another interesting issue that remains to be clarified is the osteogenic vs. adipogenic effects of BMPs. It has long been hypothesized that the osteoblast and marrow adipocyte lineages may have a close but reciprocal relationship (Nuttall & Gimble, 2004). Changes in the balance between osteogenesis and adipogenesis have been postulated as contributing factors to physiologic and pathologic conditions, such as aging and osteoporosis (Meunier *et al.*, 1971; Burkhardt *et al.*, 1987; Rozman *et al.*, 1990; Kajkenova *et al.*, 1997; Verma *et al.*, 2002; Justesen *et al.*, 2001; Moerman *et al.*, 2004). A recent study indicated that aging activates adipogenic and suppresses osteogenic programs in marrow stem cells (Moerman *et al.*, 2004). Clinically, a decrease in bone volume in age-related osteoporosis is usually accompanied by an increase in marrow adipose tissue (Meunier *et al.*, 1971; Burkhardt *et al.*, 1987; Rozman *et al.*, 1990; Kajkenova *et al.*, 1997; Verma *et al.*, 2002; Justesen *et al.*, 2001). Conversely, patients with progressive osseous hyperplasia have heterotopic bone formation within adipose tissue (Kaplan & Shore, 2000).

BMP subfamily	BMP* designation	Generic name	Phenotype of genetic disruption [References]	Functions in development
BMP2/4	ВМР2	BMP2A	embryonic lethality, delayed primitive streak, small allantois, lack of amnion, heart defects, decreased number of primordial germ cells (PGCs). [Zhang & Bradley, Dev. 122:2977 (1996)]	bone & cartilage morphogenesis/heart
	ВМР4	ВМР2В	embryonic lethality, lack of allantois and PGCs, posterior trunction, head defects, lack of optic vesicle. [Winnier et al. Genes Dev 9:2105 (1995)]	bone morphogenesis, fat differentiation
ВМРЗ	ВМР3	osteogenin	increased bone density. [Daluiski et al. Net Genet 27:84 (2001)]	negative regulator of bone density
ВМР7	ВМР5	ВМР5	short ear phenotype, defects in skeleton, lung and kidney. [Kingsley et al. Cell 71:399 (1992); King et al. Dev Biol. 166:112 (1994)]	bone morphogenesis
	ВМР6	Vgr-1	mild delay of sternum ossification. [Solloway et al. Dev Genet. 22:321 (1998)]	bone morphogenesis, hypertrophy of cartilage/skin
	вмР7	OP-1	skeletal defects, kidney agenesis, eye defects. [Dudley et al. Genes Dev. 9:2795 (1995); Luo et al. Genes Dev. 9:2808 (1995)]	bone morphogenesis, eye and kidney development
	ВМР8	OP-2	Defects in spermatogenesis and epididymis. [Zhao et al. Dev 125:1103(1998)]	bone formation
	ВМР9	GDF-2	not knovvn	cholinergic neuron differentiation, hepatocyte growth, hematopoiesis, bone formation
	BMP10	BMP10	not known	expression restricted to heart
	BMP11	GDF-11	Defects in A-P partterning of axial skeleton. [McPherron et al, Nat Genet 22:260(1999)]	A-P patterning of axial skeleton
GDF-5,6,7	BMP12	GDF-7 or CDMP-3	commissural interneurons of spinal cord. Hydrocephalic abnormalities growth defects in seminal vesicle. [Lee et al, Genes Dev 12:3394(1998); Settle et al, Dev Bio 234:138(2001)]	ligament and tendon development
	BMP13	GDF6 or CDMP2	defects in joints, cartilage, and ligament formation. [Settle et al. Dev Bio 254(1):116-130(2003)].	ectopic induction of tendon and ligament, cartilage development
	BMP14	GDF-5 or CDMP-1	Brachypodism in mice (limbs shortened with reduced number of bones). Dominant negative mutation in humans causes severe limb shortening and dysmorphogenesis. [Storm et al. Nature 368:639(1994); Storm and Kingsley, Dev 122:3969(1996); Thomas et al. Nat Gen 17:58-64(1997)]	
	BMP-15	GDF-9B	increased ovulation rate & infertility. Sterile due to defects in oogenesis. [Dong et al, Nature 383:531 (1996)]	ovulation and female fertility

^{*} Note: BMP-1 is excluded because it functions as a protease rather than a bone-forming factor.

One potential link between BMP-induced osteogenic and adipogenic differentiation of MSCs is the transcription factor PPAR γ . Our earlier studies showed that PPAR γ is readily up-regulated by osteogenic BMPs in pre-osteoblast progenitor cells (Peng *et al.*, 2003). PPAR γ insufficiency enhances osteogenesis (Akune *et al.*, 2004), whereas the PPAR γ agonist rosiglitazone causes bone loss in mice (Ali *et al.*, 2005; Soroceanu *et al.*, 2004). Nevertheless, it is not clear why osteogenic BMPs would upregulate PPAR γ expression. Interestingly, Runx2 null mice exhibit both impaired bone formation and reduced adipogenesis (Kobayashi *et al.*, 2000), suggesting that osteogenic and adipogenic differentiation are closely related. Therefore, it remains to be determined what exact roles, if any, PPAR γ may play in BMP-induced osteogenesis and adipogenesis of MSCs. Ultimately, knowledge of the regulatory mechanisms behind BMP-regulated lineage divergence during MSC differentiation should aid us in understanding the causes of osteoporosis, aging, and other skeletal diseases, and may lead to the development of novel therapeutic strategies for human disorders, such as osteoporosis and obesity.

Acknowledgements

This work was supported in part by the National Institutes of Health grants R21 DK070722 and P30 DK46211 (BONRC) (to Y.-H. T.), and the Eleanor and Miles Shore 50th Anniversary Fellowship Program from Harvard Medical School (to Y.-H. T.). T.-C. H. was supported in part by research grants from the American Cancer Society, the Brinson Foundation, and National Institutes of Health. TCH was a recipient of the Outstanding Overseas Young Investigator Collaboration Award from the Natural Science Foundation of China (NSFC #30228026) and a recipient of the Bayu Scholar of Chongqing Municipality, Chongqing, China.

References

Ahrens, M., Ankenbauer, T., Schroder, D., Hollnagel, A., Mayer, H., and Gross, G. (1993). Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 12, 871-880.

Akune, T., Ohba, S., Kamekura, S., Yamaguchi, M., Chung, U.I., Kubota, N., Terauchi, Y., Harada, Y., Azuma, Y., Nakamura, K., Kadowaki, T., and Kawaguchi, H. (2004). PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113, 846-855.

Ali, A.A., Weinstein, R.S., Stewart, S.A., Parfitt, A.M., Manolagas, S.C., and Jilka, R.L. (2005). Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146, 1226-1235.

Asahina, I., Sampath, T.K., and Hauschka, P.V. (1996). Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res. 222, 38-47.

Bachner, D., Ahrens, M., Schroder, D., Hoffmann, A., Lauber, J., Betat, N., Steinert, P., Flohe, L., and Gross, G. (1998). Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2). Dev Dyn. 213, 398-411.

Baksh, D., Song, L., and Tuan, R.S. (2004). Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8, 301-316.

Barry, F.P. and Murphy, J.M. (2004). Mesenchymal stem cells: clinical applications and biological characterization. Int. J Biochem. Cell Biol 36, 568-584.

Beppu, H., Kawabata, M., Hamamoto, T., Chytil, A., Minowa, O., Noda, T., and Miyazono, K. (2000). BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221, 249-258.

Bowers, R.R., Kim, J.W., Otto, T.C., and Lane, M.D. (2006). Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl. Acad Sci U S. A. 103, 13022-13027.

Burkhardt, R., Kettner, G., Bohm, W., Schmidmeier, M., Schlag, R., Frisch, B., Mallmann, B., Eisenmenger, W., and Gilg, T. (1987). Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8, 157-164.

Camp, H.S., Ren, D., and Leff, T. (2002). Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med 8, 442-447.

Canalis, E., Economides, A.N., and Gazzerro, E. (2003). Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218-235.

Caplan, A.I. and Bruder, S.P. (2001). Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7, 259-264.

Chang, H., Huylebroeck, D., Verschueren, K., Guo, Q., Matzuk, M.M., and Zwijsen, A. (1999). Smad5 knockout mice die at midgestation due to multiple embryonic and extraembryonic defects. Development 126, 1631-1642.

Chang, H. and Matzuk, M.M. (2001). Smad5 is required for mouse primordial germ cell development. Mech. Dev 104, 61-67.

Chen, D., Ji, X., Harris, M.A., Feng, J.Q., Karsenty, G., Celeste, A.J., Rosen, V., Mundy, G.R., and Harris, S.E. (1998). Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142, 295-305.

Chen, T.L., Shen, W.J., and Kraemer, F.B. (2001). Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J Cell Biochem. 82, 187-199.

Cheng, H., Jiang, W., Phillips, F.M., Haydon, R.C., Peng, Y., Zhou, L., Luu, H.H., An, N., Breyer, B., Vanichakarn, P., Szatkowski, J.P., Park, J.Y., and He, T.C. (2003). Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg. Am 85-A, 1544-1552.

Cinti, S. (2005). The adipose organ. Prostaglandins. Leukot. Essent. Fatty. Acids 73, 9-15.

Constam, D.B. and Robertson, E.J. (1999). Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol 144, 139-149.

Cousin, B., Cinti, S., Morroni, M., Raimbault, S., Ricquier, D., Penicaud, L., and Casteilla, L. (1992). Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 103 (Pt 4), 931-942.

Cowherd, R.M., Lyle, R.E., and McGehee, R.E.J. (1999). Molecular regulation of adipocyte differentiation. PMID 10, 3-10.

Cui, Y., Jean, F., Thomas, G., and Christian, J.L. (1998). BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 17, 4735-4743.

Daluiski, A., Engstrand, T., Bahamonde, M.E., Gamer, L.W., Agius, E., Stevenson, S.L., Cox, K., Rosen, V., and Lyons, K.M. (2001). Bone morphogenetic protein-3 is a negative regulator of bone density. Nat. Genet. 27, 84-88.

Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R., Lu, N., and Matzuk, M.M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 383, 531-535.

Dudley, A.T., Lyons, K.M., and Robertson, E.J. (1995). A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes. Dev 9, 2795-2807.

Dudley, A.T. and Robertson, E.J. (1997). Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 208, 349-362.

Farmer, S.R. (2006). Transcriptional control of adipocyte formation. Cell Metab 4, 263-273.

Friedenstein, A.J., Piatetzky-Shapiro, I.I., and Petrakova, K.V. (1966). Osteogenesis in transplants of bone marrow cells. J Embryol.

Exp Morphol. 16, 381-390.

Friedman, J.M. (2000). Obesity in the new millennium. Nature. 404, 632-634.

Furuta, Y., Piston, D.W., and Hogan, B.L. (1997). Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203-2212.

Gimble, J.M., Morgan, C., Kelly, K., Wu, X., Dandapani, V., Wang, C.S., and Rosen, V. (1995). Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J Cell Biochem. 58, 393-402.

Gregoire, F.M. (2001). Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med (Maywood) 226, 997-1002.

Gregoire, F.M., Smas, C.M., and Sul, H.S. (1998). Understanding adipocyte differentiation. Physiol Rev 78, 783-809.

Griffith, D.L., Keck, P.C., Sampath, T.K., Rueger, D.C., and Carlson, W.D. (1996). Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl. Acad Sci U S. A. 93, 878-883.

Gu, Z., Reynolds, E.M., Song, J., Lei, H., Feijen, A., Yu, L., He, W., MacLaughlin, D.T., van den Eijnden-van Raaij, Donahoe, P. K., and Li, E. (1999). The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 126, 2551-2561.

Hata, K., Nishimura, R., Ikeda, F., Yamashita, K., Matsubara, T., Nokubi, T., and Yoneda, T. (2003). Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol Biol Cell 14, 545-555.

He, T.C. (2005). Distinct osteogenic activity of BMPs and their orthopaedic applications. J Musculoskelet. Neuronal. Interact. 5, 363-366.

Heldin, C.H., Miyazono, K., and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390, 465-471.

Himms-Hagen, J., Melnyk, A., Zingaretti, M.C., Ceresi, E., Barbatelli, G., and Cinti, S. (2000). Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol. Cell Physiol. 279, C670-C681.

Hogan, B.L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes. Dev 10, 1580-1594.

Hu, M.C., Wasserman, D., Hartwig, S., and Rosenblum, N.D. (2004). p38MAPK acts in the BMP7-dependent stimulatory pathway during epithelial cell morphogenesis and is regulated by Smad1. J Biol Chem. 279, 12051-12059.

Israel, D.I., Nove, J., Kerns, K.M., Moutsatsos, I.K., and Kaufman, R.J. (1992). Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells. Growth Factors. 7, 139-150.

Iwasaki, M., Le, A.X., and Helms, J.A. (1997). Expression of indian hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech. Dev 69, 197-202.

Ji, X., Chen, D., Xu, C., Harris, S.E., Mundy, G.R., and Yoneda, T. (2000). Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. J Bone Miner. Metab 18, 132-139.

Jin, W., Takagi, T., Kanesashi, S.N., Kurahashi, T., Nomura, T., Harada, J., and Ishii, S. (2006). Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 10, 461-471.

Jones, C.M., Lyons, K.M., and Hogan, B.L. (1991). Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111, 531-542.

Justesen, J., Stenderup, K., Ebbesen, E.N., Mosekilde, L., Steiniche, T., and Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2, 165-171.

Kajkenova, O., Lecka-Czernik, B., Gubrij, I., Hauser, S.P., Takahashi, K., Parfitt, A.M., Jilka, R.L., Manolagas, S.C., and Lipschitz, D.A. (1997). Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner. Res. 12, 1772-1779.

Kaplan, F.S. and Shore, E.M. (2000). Progressive osseous heteroplasia. J Bone Miner. Res. 15, 2084-2094.

Karsenty, G. (2000). Bone formation and factors affecting this process. Matrix Biol 19, 85-89.

Katagiri, T., Boorla, S., Frendo, J.L., Hogan, B.L., and Karsenty, G. (1998). Skeletal abnormalities in doubly heterozygous Bmp4 and Bmp7 mice. Dev Genet. 22, 340-348.

King, J.A., Marker, P.C., Seung, K.J., and Kingsley, D.M. (1994). BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166, 112-122.

Kingsley, D.M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes. Dev 8, 133-146.

Kingsley, D.M., Bland, A.E., Grubber, J.M., Marker, P.C., Russell, L.B., Copeland, N.G., and Jenkins, N.A. (1992). The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71, 399-410.

Kishigami, S. and Mishina, Y. (2005). BMP signaling and early embryonic patterning. Cytokine. Growth Factor. Rev. 16, 265-278.

Klaus, S. (2004). Adipose tissue as a regulator of energy balance. Curr Drug Targets. 5, 241-250.

Kleber, M. and Sommer, L. (2004). Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol 16, 681-687.

Kobayashi, H., Gao, Y., Ueta, C., Yamaguchi, A., and Komori, T. (2000). Multilineage differentiation of Cbfa1-deficient calvarial cells *in vitro*. Biochem. Biophys. Res. Commun. 273, 630-636.

Koutnikova, H. and Auwerx, J. (2001). Regulation of adipocyte differentiation. Ann Med 33, 556-561.

Koza, R.A., Nikonova, L., Hogan, J., Rim, J.S., Mendoza, T., Faulk, C., Skaf, J., and Kozak, L.P. (2006). Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS. Genet. 2, e81.

Lacroix, S. (1945). Recent investigation on the growth of bone. Nature 156, 576.

Langer, L.O., Jr., Cervenka, J., and Camargo, M. (1989). A severe autosomal recessive acromesomelic dysplasia, the Hunter-Thompson type, and comparison with the Grebe type. Hum. Genet. 81, 323-328.

Lechleider, R.J., Ryan, J.L., Garrett, L., Eng, C., Deng, C., Wynshaw-Boris, A., and Roberts, A.B. (2001). Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol 240, 157-167.

Lee, K.J., Mendelsohn, M., and Jessell, T.M. (1998). Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes. Dev 12, 3394-3407.

Lee, S.J. (1991). Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proc Natl. Acad Sci U S. A. 88, 4250-4254.

Lev, S., Blechman, J.M., Nishikawa, S., Givol, D., and Yarden, Y. (1993). Interspecies molecular chimeras of kit help define the binding site of the stem cell factor. Molecular & Cellular Biology 13, 2224-2234.

Lindberg, O., de Pierre, J., Rylander, E., and Afzelius, B.A. (1967). Studies of the mitochondrial energy-transfer system of brown

adipose tissue. J Cell Biol 34, 293-310.

Liu, F., Ventura, F., Doody, J., and Massague, J. (1995). Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15, 3479-3486.

Luo, G., Hofmann, C., Bronckers, A.L., Sohocki, M., Bradley, A., and Karsenty, G. (1995). BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes. Dev 9, 2808-2820.

Luo, J., Sun, M.H., Kang, Q., Peng, Y., Jiang, W., Luu, H.H., Luo, Q., Park, J.Y., Li, Y., Haydon, R.C., and He, T.C. (2005). Gene therapy for bone regeneration. Curr Gene Ther 5, 167-179.

Luo, Q., Kang, Q., Si, W., Jiang, W., Park, J.K., Peng, Y., Li, X., Luu, H.H., Luo, J., Montag, A.G., Haydon, R.C., and He, T.C. (2004). Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 279, 55958-55968.

Lyons, K.M., Hogan, B.L., and Robertson, E.J. (1995). Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev 50, 71-83.

Lyons, K.M., Pelton, R.W., and Hogan, B.L. (1989). Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes. Dev 3, 1657-1668.

Lyons, K.M., Pelton, R.W., and Hogan, B.L. (1990). Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109, 833-844.

Massague, J. (1998). TGF-beta signal transduction. Annu Rev. Biochem. 67, 753-791.

Massague, J. and Chen, Y.G. (2000). Controlling TGF-beta signaling. Genes. Dev 14, 627-644.

Massague, J. and Weis-Garcia, F. (1996). Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv. 27, 41-64.

McGrath, S.A., Esquela, A.F., and Lee, S.J. (1995). Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 9, 131-136.

McPherron, A.C., Lawler, A.M., and Lee, S.J. (1999). Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22, 260-264.

Meunier, P., Aaron, J., Edouard, C., and Vignon, G. (1971). Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop. Relat Res. 80, 147-154.

Mishina, Y., Crombie, R., Bradley, A., and Behringer, R.R. (1999). Multiple roles for activin-like kinase-2 signaling during mouse embryogenesis. Dev Biol 213, 314-326.

Mishina, Y., Suzuki, A., Ueno, N., and Behringer, R.R. (1995). Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes. Dev 9, 3027-3037.

Moerman, E.J., Teng, K., Lipschitz, D.A., and Lecka-Czernik, B. (2004). Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging. Cell 3, 379-389.

Molofsky, A.V., Pardal, R., and Morrison, S.J. (2004). Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16, 700-707.

Moulin, K., Arnaud, E., Nibbelink, M., Viguerie-Bascands, N., Penicaud, L., and Casteilla, L. (2001a). Cloning of BUG demonstrates the existence of a brown preadipocyte distinct from a white one. Int. J Obes. Relat Metab Disord. 25, 1431-1441.

Moulin, K., Truel, N., Andre, M., Arnauld, E., Nibbelink, M., Cousin, B., Dani, C., Penicaud, L., and Casteilla, L. (2001b). Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochem. J 356, 659-664.

Nakashima, M., Toyono, T., Akamine, A., and Joyner, A. (1999). Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech. Dev 80, 185-189.

Nedergaard, J., Connally, E., and Cannon, B. (1986). Brown adipose tissue in the mammalian neonate. In Brown Adipose Tissue, P. Trayhurn and D.G.Nicholls, eds. (Baltimore: Edward Arnold), pp. 152-213.

Neuhaus, H., Rosen, V., and Thies, R.S. (1999). Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech. Dev 80, 181-184.

Nuttall, M.E. and Gimble, J.M. (2004). Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol. 4, 290-294.

Olsen, B.R., Reginato, A.M., and Wang, W. (2000). Bone development. Annu Rev. Cell Dev Biol 16, 191-220.

Otto, T.C., Bowers, R.R., and Lane, M.D. (2006). BMP-4 treatment of C3H10T1/2 stem cells blocks expression of MMP-3 and MMP-13. Biochem. Biophys. Res. Commun.

Otto, T.C. and Lane, M.D. (2005). Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol Biol 40, 229-242.

Ozkaynak, E., Schnegelsberg, P.N., Jin, D.F., Clifford, G.M., Warren, F.D., Drier, E.A., and Oppermann, H. (1992). Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis. J Biol Chem. 267, 25220-25227.

Peng, Y., Kang, Q., Cheng, H., Li, X., Sun, M.H., Jiang, W., Luu, H.H., Park, J.Y., Haydon, R.C., and He, T.C. (2003). Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J Cell Biochem. 90, 1149-1165.

Peng, Y., Kang, Q., Luo, Q., Jiang, W., Si, W., Liu, B.A., Luu, H.H., Park, J.K., Li, X., Luo, J., Montag, A.G., Haydon, R.C., and He, T.C. (2004). Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 279, 32941-32949.

Pereira, R.C., Delany, A.M., and Canalis, E. (2002). Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone 30, 685-691.

Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.

Polinkovsky, A., Robin, N.H., Thomas, J.T., Irons, M., Lynn, A., Goodman, F.R., Reardon, W., Kant, S.G., Brunner, H.G., van, d. B., I, Chitayat, D., McGaughran, J., Donnai, D., Luyten, F.P., and Warman, M.L. (1997). Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat. Genet. 17, 18-19.

Prockop, D.J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74.

Rangwala, S.M. and Lazar, M.A. (2000). Transcriptional control of adipogenesis. Annu Rev Nutr 20, 535-559.

Rebbapragada, A., Benchabane, H., Wrana, J.L., Celeste, A.J., and Attisano, L. (2003). Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23, 7230-7242.

Reddi, A.H. (1997). Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine. Growth Factor. Rev. 8, 11-20.

Reddi, A.H. (1998). Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 16, 247-252.

Reya, T. and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature. 434, 843-850.

Reznikoff, C.A., Brankow, D.W., and Heidelberger, C. (1973). Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 33, 3231-3238.

Rosen, E.D. (2005). The transcriptional basis of adipocyte development. Prostaglandins. Leukot. Essent. Fatty. Acids 73, 31-34.

Rosen, E.D. and MacDougald, O.A. (2006). Adipocyte differentiation from the inside out. Nat. Rev. Mol Cell Biol 7, 885-896.

Rosen, V., Thies, R.S., and Lyons, K. (1996). Signaling pathways in skeletal formation: a role for BMP receptors. Ann. N Y Acad Sci 785, 59-69.

Rozman, C., Reverter, J.C., Feliu, E., Berga, L., Rozman, M., and Climent, C. (1990). Variations of fat tissue fraction in abnormal human bone marrow depend both on size and number of adipocytes: a stereologic study. Blood 76, 892-895.

Ruberte, E., Marty, T., Nellen, D., Affolter, M., and Basler, K. (1995). An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell 80, 889-897.

Schlunegger, M.P. and Grutter, M.G. (1992). An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Nature. 358, 430-434.

Schultheiss, T.M., Burch, J.B., and Lassar, A.B. (1997). A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes. Dev 11, 451-462.

Sciaudone, M., Gazzerro, E., Priest, L., Delany, A.M., and Canalis, E. (2003). Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144, 5631-5639.

Settle, S., Marker, P., Gurley, K., Sinha, A., Thacker, A., Wang, Y., Higgins, K., Cunha, G., and Kingsley, D.M. (2001). The BMP family member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev Biol 234, 138-150.

Si, W., Kang, Q., Luu, H.H., Park, J.K., Luo, Q., Song, W.X., Jiang, W., Luo, X., Li, X., Yin, H., Montag, A.G., Haydon, R.C., and He, T.C. (2006). CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26, 2955-2964.

Skillington, J., Choy, L., and Derynck, R. (2002). Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 159, 135-146.

Solloway, M.J., Dudley, A.T., Bikoff, E.K., Lyons, K.M., Hogan, B.L., and Robertson, E.J. (1998). Mice lacking Bmp6 function. Dev Genet. 22, 321-339.

Song, C., Guo, Z., Ma, Q., Chen, Z., Liu, Z., Jia, H., and Dang, G. (2003). Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem. Biophys. Res. Commun. 308, 458-462.

Soroceanu, M.A., Miao, D., Bai, X.Y., Su, H., Goltzman, D., and Karaplis, A.C. (2004). Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183, 203-216.

Sottile, V. and Seuwen, K. (2000). Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS. Lett. 475, 201-204.

Storm, E.E., Huynh, T.V., Copeland, N.G., Jenkins, N.A., Kingsley, D.M., and Lee, S.J. (1994). Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 368, 639-643.

Storm, E.E. and Kingsley, D.M. (1996). Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122, 3969-3979.

Taha, M.F., Valojerdi, M.R., and Mowla, S.J. (2006). Effect of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse embryonic stem cells. Anat. Histol. Embryol. 35, 271-278.

Tang, Q.Q., Otto, T.C., and Lane, M.D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl. Acad Sci U S. A. 101, 9607-9611.

Taylor, S.M. and Jones, P.A. (1979). Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17, 771-779.

Thomas, J.T., Kilpatrick, M.W., Lin, K., Erlacher, L., Lembessis, P., Costa, T., Tsipouras, P., and Luyten, F.P. (1997). Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat. Genet. 17, 58-64.

Thomas, J.T., Lin, K., Nandedkar, M., Camargo, M., Cervenka, J., and Luyten, F.P. (1996). A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat. Genet. 12, 315-317.

Tremblay, K.D., Dunn, N.R., and Robertson, E.J. (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128, 3609-3621.

Urist, M.R. (1965). Bone: formation by autoinduction. Science 150, 893-899.

Urist, M.R. (1997). Bone morphogenetic protein: the molecularization of skeletal system development. J Bone Miner. Res. 12, 343-346.

Varga, A.C. and Wrana, J.L. (2005). The disparate role of BMP in stem cell biology. Oncogene. 24, 5713-5721.

Verma, S., Rajaratnam, J.H., Denton, J., Hoyland, J.A., and Byers, R.J. (2002). Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol. 55, 693-698.

Wang, E.A., Israel, D.I., Kelly, S., and Luxenberg, D.P. (1993). Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 9, 57-71.

Wang, J. and Wynshaw-Boris, A. (2004). The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Curr Opin Genet. Dev 14, 533-539.

Winnier, G., Blessing, M., Labosky, P.A., and Hogan, B.L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes. Dev 9, 2105-2116.

Witthuhn, B.A. and Bernlohr, D.A. (2001). Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine. 14, 129-135.

Wolfman, N.M., Hattersley, G., Cox, K., Celeste, A.J., Nelson, R., Yamaji, N., Dube, J.L., DiBlasio-Smith, E., Nove, J., Song, J.J., Wozney, J.M., and Rosen, V. (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 100, 321-330.

Wozney, J.M. (1998). The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult. Eur. J Oral. Sci 106 Suppl 1, 160-166.

Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., and Wang, E.A. (1988). Novel regulators of bone formation: molecular clones and activities. Science 242, 1528-1534.

Yang, X., Castilla, L.H., Xu, X., Li, C., Gotay, J., Weinstein, M., Liu, P.P., and Deng, C.X. (1999). Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126, 1571-1580.

Zhang, H. and Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977-2986.

Zhang, J. and Li, L. (2005). BMP signaling and stem cell regulation. Dev Biol 284, 1-11.

Zhao, G.Q. (2003). Consequences of knocking out BMP signaling in the mouse. Genesis. 35, 43-56.

Zhao,G.Q., Liaw,L., and Hogan,B.L. (1998). Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 125, 1103-1112.