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Fig. 1. The mechanism of skeletal muscle non-shivering thermogenesis (NST) and natural products targeting skeletal muscle NST to combat obesity, which is adapted
from Maurya et al. [65] with some modification. The mechanisms of skeletal muscle NST includes (1) SLN mediated futile SERCA pump activity, (2) SR-mitochondria
crosstalk and increased mitochondrial biogenesis, (3) thermogenesis mediated by UCP3.
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FIGURE 1 | TRP channel-mediated adipocyte thermogenesis. A schematic figure of how TRPV1, TRPV2, TRPV4, TRPMS8, and TRPC1-mediated calcium influx

regulates thermogenic gene expression in adipocytes, which causes enhanced thermogenesis. Moreover, the increase in sympathetic nerve activity causes

norepinephrine release from the sympathetic nerves and activation of p3-adrenergic receptor (33ADR) in brown adipocytes, TRPV2 synergistically collaborated with
B3ADR to involve in the reguiation of peroxisome prolfferator-activated receptor gamma coactivator-1 a (PGC1a) and uncoupling protein 1 (UCP1), subsequently
enhances thermogenesis. On the other hand, TRPV4-mediated calcium influx negatively regulates thermogenic gene expression i adipocytes and subsequently

inhibits thermogenesis.
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Fig. 1. Proposed mechanism to show how sarcolipin (SLN)/sarcoendoplasmic reticulum calcium APTase (SERCA) interaction
affects muscle metabolism. SERCA uses adenosine triphosphate (ATP) hydrolysis to actively transport Ca® from the cytosol into
the sarcoplasmic reticulum lumen. SLN and Ca® bind competitively to SERCA during Ca* transport. SLN binding to SERCA
does not inhibit ATP hydrolysis but prevents Ca® transport by a mechanism named uncoupling, where Ca® slips back into cyto-
sol. Uncoupling of SERCA leads to futile cycling of the SERCA pump resulting in increased ATP hydrolysis/heat production;
thus, creating energy demand. Uncoupling of SERCA increases cytosolic Ca®* acutely, thereby promoting Ca® entry into mito-
chondria matrix activating the oxidative metabolism and ATP synthesis. RyR1, ryanodine receptor 1; ADP, adenosine diphos-
phate; Pi, inorganic phosphate.
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