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SUMMARY

The mitochondrial calcium uniporter has been pro-
posed to coordinate the organelle’s energetics with
calcium signaling. Uniporter current has previously
been reported to be extremely high in brown adipose
tissue (BAT), yet it remains unknown how the uni-
porter contributes to BATphysiology. Here, we report
thegeneration andcharacterization of amousemodel
lackingMcu, thepore formingsubunit of theuniporter,
specifically inBAT (BAT-Mcu-KO).BAT-Mcu-KOmice
lack uniporter-based calcium uptake in BAT mito-
chondria but exhibit unaffected cold tolerance, diet-
induced obesity, and transcriptional response to
cold in BAT. Unexpectedly, we found in wild-type an-
imals that cold powerfully activates the ATF4-depen-
dent integrated stress response (ISR) in BAT and up-
regulates circulating FGF21 and GDF15, raising the
hypothesis that the ISRpartlyunderlies thepleiotropic
effects of BAT on systemic metabolism. Our study
demonstrates that theuniporter is largelydispensable
for BAT thermogenesis and demonstrates activation
of the ISR in BAT in response to cold.

INTRODUCTION

For decades, it has been known that calcium ions can entermito-

chondria through a highly selective uniporter channel, driven by

the electrochemical gradient across the inner mitochondrial

membrane (IMM) (Carafoli and Lehninger, 1971; Deluca and

Engstrom, 1961; Kirichok et al., 2004; Vasington and Murphy,

1962). Numerous studies have confirmed that calcium uptake

in isolated mitochondria leads to transient dissipation of the

membrane potential and sustained enhancement of NAD(P)H

autofluorescence, oxygen consumption, and ATP phosphoryla-

tion (Territo et al., 2000). The effect on membrane potential is

readily explained by the fact that the uniporter is electrophoretic,

and hence calcium uptake leads to depolarization. Amechanism

for the boost in NADH and oxidative phosphorylation was pro-

posed as early as the 1970s, when it was noted that three matrix
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dehydrogenases are allosterically stimulated by calcium ions

in vitro (for reviews, see Denton, 2009; Denton et al., 1996; Mc-

Cormack et al., 1990).

Because energy-consuming events such as muscle contrac-

tion and neurotransmission are triggered by a release of calcium

into the cytosol, it is plausible that these calcium boluses could

enter mitochondria via the uniporter and trigger ATP production

to match the increased cellular demand (Denton, 2009; Territo

et al., 2000). This ‘‘feed-forward’’ model has historically been

impossible to test, however, due to a lack of tools to selectively

modulate the uniporter’s activity in vivo. Themolecular identity of

the uniporter began to be elucidated in 2010, enabling genetic

disruption of its activity for the first time (Perocchi et al., 2010).

At present, the mammalian uniporter is known to comprise five

primary components, two of which are required to maintain a

functional channel: the pore-forming subunit, MCU, and a small

transmembrane binding partner, EMRE, both of which localize to

the IMM (Baughman et al., 2011; Kovács-Bogdán et al., 2014;

Sancak et al., 2013); MICU1 and MICU2, which are soluble sub-

units in the intermembrane space (IMS) that sense and gate the

uniporter in the presence of subthreshold cytosolic calcium

levels (Csordás et al., 2013; Kamer and Mootha, 2014; Kamer

et al., 2017; Mallilankaraman et al., 2012); and theMCU homolog

MCUb, which is thought to negatively regulate the uniporter’s

conductance (Raffaello et al., 2013).

The molecular identification of this machinery has provided an

unprecedented opportunity to delineate the role of the uniporter

in cellular and organismal physiology. Several mouse models

have since confirmed a role for the uniporter in supporting tissue

bioenergetics, particularly when energy demand is acutely

increased (Pan et al., 2013; Kwong et al., 2015; Luongo et al.,

2015). In addition, a 2012 electrophysiology study by Fieni

et al. (2012) demonstrated that the current density attributable

to the uniporter is exceptionally high in mitoplasts isolated

from skeletal muscle and brown adipose tissue (BAT) in compar-

ison to liver, kidney, and heart. Skeletal muscle and BAT share a

growing list of similarities (Seale et al., 2008; Stanford et al.,

2013; Kim et al., 2013; Fisher et al., 2012), and both tissues

respond to adrenergic signaling cues by acutely increasing en-

ergy consumption (Bachman et al., 2002; Lynch and Ryall,

2008). Because the uniporter has been shown to play a key bio-

energetic role in skeletal muscle (Pan et al., 2013), we reasoned
.
commons.org/licenses/by/4.0/).

mailto:sancak@uw.edu
mailto:vamsi@hms.harvard.edu
https://doi.org/10.1016/j.celrep.2019.04.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.04.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/


that it could serve a similarly important function in BAT; however,

no studies to date have examined the role of the uniporter in this

tissue.

BAT is a mammalian tissue specialized for metabolic ineffi-

ciency (Cannon and Nedergaard, 2004; Townsend and Tseng,

2014). It is densely packed with mitochondria and lipid droplets

and is heavily innervated by sympathetic fibers that secrete

norepinephrine (NE) in response to stimuli such as cold. NE

acts on brown adipocytes primarily through the b3-adrenergic

receptor, which signals through the cAMP-PKA pathway to

liberate free fatty acids (FFA); these are oxidized to CO2 in the

mitochondrial matrix but also activate uncoupling protein 1

(UCP1), a transporter that effectively permeabilizes the IMM to

protons (Fedorenko et al., 2012;Wikstrom et al., 2014). NE there-

fore simultaneously stimulates rapid respiration and uncoupling

in BAT, resulting in heat.

Early studies on isolated brown adipocytes found that intracel-

lular calcium pools are mobilized by NE stimulation (Connolly

et al., 1984), and subsequent imaging studies have repeatedly

confirmed that NE induces a rise in cytosolic calcium in brown

adipocytes (Chen et al., 2017; Leaver and Pappone, 2002; Lee

et al., 1993; Nakagaki et al., 2005). However, it remains contro-

versial whether this calcium is derived frommitochondria (Leaver

and Pappone, 2002), and indeed whether NE stimulation causes

a net rise or fall in matrix calcium levels (Hayato et al., 2011; Na-

kagaki et al., 2005). Although the physiological role of calcium

signaling in BAT thermogenesis remains largely unexplored, it

has recently been demonstrated that elevated cytosolic calcium

can blunt heat production and thermogenic gene expression by

repressing cAMP-PKA signaling (Chen et al., 2017; Nam et al.,

2017). Elucidating the role of mitochondrial calcium handling in

BAT may therefore provide significant insight into the regulation

of thermogenesis.

In the present study, we generated and characterized amouse

model harboring BAT-specific loss of MCU (BAT-Mcu-KO).

Despite ablated uniporter activity in this tissue, the animals did

not exhibit an obvious phenotype: BAT bioenergetics were

unimpaired as evidenced by intact cold-tolerance, susceptibility

to diet-induced obesity, and thermogenic gene expression.

Unexpectedly we found in wild-type animals that the integrated

stress response (ISR) triggered by activating transcription factor

4 (ATF4) is strongly induced by cold in BAT.

RESULTS

Uniporter Expression Is Unremarkable in BAT
We first sought to determine whether the high uniporter current

density reported in BAT mitochondria could be explained by

high expression of MCU (Fieni et al., 2012). Prior large-scale

studies found that MCU transcript levels are comparable be-

tween BAT, kidney, liver, and heart, and are approximately

2-fold higher in skeletal muscle (Su et al., 2002). Because these

measurements do not correlate with the current densities re-

ported in Fieni et al. (2012), we hypothesized that the uniporter

components may vary more dramatically at the protein level

across this panel of tissues. We therefore measured the abun-

dance of MCU, EMRE, MICU1, and MICU2 in mitochondria iso-

lated from each tissue (Figures S1A and S1B). We confirmed that
these four components are highly enriched in skeletal muscle

and depleted in heart. Surprisingly, however, the components

were similarly expressed in BAT, kidney, and liver, at a level inter-

mediate between that of skeletal muscle and heart. Thus, the

current densities reported by Fieni et al. (2012) appear to corre-

late with uniporter protein levels in skeletal muscle, kidney, liver,

and heart, but not in BAT.

Generation of BAT-Specific MCU Knockout Mice
C57BL/6 mice harboring a full-body knockout of Mcu die prior

to birth for unknown reasons (Murphy et al., 2014). Therefore, in

order to examine the role of the uniporter in BAT, we deleted

Mcu in a tissue-specific manner. We first generated a conditional

Mcu allele in which the second exon is flanked by LoxP sites (Fig-

ure S2A). We then bred mice homozygous for this allele (Mcufl/fl)

with a transgenic line expressing Cre recombinase under control

of the Ucp1 promoter, which is highly specific to BAT (Kong

et al., 2014). Mcufl/fl animals harboring the Ucp1-Cre transgene

were born at the expectedMendelian ratio andwere grossly indis-

tinguishable fromMcufl/fl animals lacking theUcp1-Cre transgene.

We first confirmed that Mcufl/fl;Ucp1-Cre (BAT-Mcu-KO) ani-

mals exhibited complete loss of MCU in BAT but not in liver,

whereas Mcufl/fl (control) animals were unaffected (Figure 1A).

EMRE levels were negligible in BAT-Mcu-KO BAT, consistent

with reports that this protein is proteolytically degradedwhen un-

bound to MCU (Tsai et al., 2017), and MICU1 and MICU2 levels

were reduced (Figure 1A). To ensure that uniporter activity

was fully ablated, BAT mitochondria were isolated from BAT-

Mcu-KO and control animals and energized with L-glycerol-3-

phosphate (G3P) plus rotenone in the presence of GDP. As

expected, control mitochondria exhibited a robust calcium up-

take activity under these conditions, whichwas completely abro-

gated in BAT-Mcu-KO mitochondria (Figure 1B).

Our group previously demonstrated that OXPHOS is intact

following MCU knockdown in vivo in liver, as demonstrated by

intact State 3 to State 4 transitions in isolated mitochondria

(Baughman et al., 2011). Consistently, mitochondria isolated

from BAT-Mcu-KO and control BAT exhibited identical rates of

oxygen consumption at baseline, in the presence of G3P (State

4u), and in the presence of both G3P and GDP (State 4) (Figures

1C and 1D).

MCU Is Dispensable for BAT Bioenergetics
We next sought to determine the effect of MCU loss on BAT bio-

energetics. Mice harboring lesions in mitochondrial bioener-

getics in BAT are typically unable to maintain their body temper-

atures when acutely exposed to 4�C; thus, we speculated that

BAT-specific MCU loss would confer increased sensitivity to

cold stress (Bachman et al., 2002; Enerbäck et al., 1997; Lowell

et al., 1993; Vergnes et al., 2011). Surprisingly, however, both

BAT-Mcu-KO and control animals were able to defend their

body temperatures to an equal extent when transferred from

room temperature (RT) to 4�C (Figures 2A and S2B).

The response of BAT to a cold challenge is highly dependent

on the temperature to which the animal has been habituated.

Mice acclimated to 30�C conditions (thermoneutrality) exhibit

an accumulation of unilocular lipid droplets and a mild reduction

of mitochondria in interscapular BAT compared to mice housed
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Figure 1. Selective Ablation of MCU in Brown Fat
(A) Effect of brown fat-specific Cre recombinase expression on uniporter protein levels on the Mcu[fl/fl] background.

(B) Left: representative Ca2+ uptake traces in isolated brown fat mitochondria energized with glycerol-3-phosphate (G3P) + rotenone in the presence of guanosine

diphosphate (GDP). Right: quantification of Ca2+ uptake rates (n = 4).

(C) Oxygen consumption measurements of isolated brown fat mitochondria in a well stirred cuvette at room temperature. Mitochondria, G3P, and GDP were

added at indicated time points.

(D) Quantification of oxygen consumption rates (n = 4).

Results are reported as mean + SEM. Statistical significance is indicated as **p < 0.01 (Student’s t test).
at room temperature (22�C–26�C), and display a dramatic reduc-

tion in BAT oxygen consumption when administered a bolus of

norepinephrine (NE) (Cannon and Nedergaard, 2011; Kozak,

2014). Conversely, even mice lacking UCP1 are able to defend

their body temperatures at 4�C following 12 days of acclimation

to mild cold (18�C) (Keipert et al., 2017). To test whether the role

of the uniporter in nonshivering thermogenesis is dependent on

the animals’ thermal prehistory, we habituated a cohort of

mice to 30�C conditions for 1 week prior to administering a

cold challenge. Both BAT-Mcu-KO and control animals were

again able to defend their body temperatures to an equal extent

(Figures 2B and S2C). We thus conclude that the uniporter is not

required for body temperature maintenance via nonshivering

thermogenesis.

Lesions in BAT thermogenesis have been shown to confer

increased susceptibility to diet-induced obesity (Bachman

et al., 2002; Feldmann et al., 2009; Lowell et al., 1993). To deter-

mine whether MCU loss constitutes such a lesion, we monitored

body mass in BAT-Mcu-KO and control animals maintained on a

high-fat diet (HFD) for 16 weeks. Consistent with our observa-

tions of cold tolerance, neither male nor female BAT-Mcu-KO

animals exhibited a significant difference in body weight from

age-matched control animals over the course of the experiment

(Figures 2C, 2D, S2D, and S2E). Importantly we note that this

study was conducted at room temperature, whereas prior

studies have suggested that defects in diet-induced thermogen-

esis can generally only be observed at thermoneutrality (Ener-

bäck et al., 1997; Feldmann et al., 2009). It is therefore plausible

that a genotype-dependent response to HFDmight be evident at

30�C, although this is unlikely given that cold tolerance is unaf-

fected by MCU.

The matrix enzyme pyruvate dehydrogenase phosphatase 1

(PDP1), which dephosphorylates and activates the pyruvate de-

hydrogenase (PDH) complex, has been shown to be allosterically

activated by calcium in vitro (Denton et al., 1996; Huang et al.,

1998). Consistently, CD1 total-body MCU knockout mice exhibit
1366 Cell Reports 27, 1364–1375, April 30, 2019
a decreased matrix calcium load and increased skeletal muscle

PDH phosphorylation following a 16-h fast (Pan et al., 2013). In

addition, skin fibroblasts isolated from patients with homozy-

gous MICU1 loss exhibit an increased matrix calcium load and,

as reported in a separate study, decreased PDH phosphoryla-

tion (Lewis-Smith et al., 2016; Logan et al., 2014). The uniporter

has thus emerged as an important regulator of PDH phosphory-

lation under select conditions.

We speculated that MCU loss might impact PDH phosphory-

lation in BAT. To characterize the dynamics of PDH phosphory-

lation in BAT,micewere fasted overnight followed by 6 h of either

additional fasting or ad libitum re-feeding. As has previously

been demonstrated in skeletal muscle, re-feeding induced

robust PDH dephosphorylation in BAT (Gudiksen and Pilegaard,

2017; Sugden et al., 2000). Interestingly, however, MCU

loss did not impact refeeding-induced PDH dephosphorylation

(Figure 2E).

Multiple studies have shown that adrenergic stimulation elicits

a rise in cytosolic calcium in brown adipocytes (Chen et al., 2017;

Leaver and Pappone, 2002). Mitochondrial calcium handling has

been implicated in this process; however, it remains controver-

sial if mitochondria subsequently take up the cytosolic calcium

spike, or if they in fact contribute to it by releasing matrix calcium

stores following UCP1-mediated depolarization (Connolly and

Nedergaard, 1988; Lee et al., 1993; Nakagaki et al., 2005). We

reasoned that according to either of these models, cold might

impact PDH phosphorylation in BAT in an MCU-dependent

manner. We therefore measured BAT PDH phosphorylation in

BAT-Mcu-KO and control mice exposed to either RT or 4�C for

6 h. However, cold exposure did not substantially affect PDH

phosphorylation in either genotype; MCU loss also had no effect

on PDH phosphorylation at either temperature (Figure 2F).

Taken together, our observations suggest that uniporter func-

tion is largely dispensable for BAT bioenergetics, although we

cannot exclude subtle effects that might be relevant in more nat-

ural environments.
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Figure S3A.
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presented in Figure S3B.

(C and D) Body mass of male (C) and female (D)
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and S3D.
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Results are reported as mean + SEM.
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Figure 3. Transcriptional Response to Cold Exposure

(A) qPCR of MCU and cold-induced transcripts in brown fat (n = 5–6 mice per group).

(B) Normalized counts of transcripts in (A) measured by RNA-seq.

(C) Principal component analysis of gene expression data.

(D) Volcano plots comparing �Cre with +Cre gene expression at two temperatures, and comparing RT with 4�C gene expression in both genotypes (blue points

denote transcripts achieving an adjusted p value < 0.05).

(E) Top 10 genes enriched by genotype at either RT or 4�C (genes ranked by adjusted p value).

(F) Top 10 genes enriched by temperature in either �Cre or +Cre mice.

(legend continued on next page)
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BAT Gene Expression Is Remodeled by Acute Cold
Exposure Independently of MCU
Because wewere unable to detect a strong in vivo phenotype re-

sulting from MCU loss in BAT, we next aimed to systematically

quantify genome-wide gene expression in BAT in control and

BAT-Mcu-KO animals. Prior studies of MCU knockout in skeletal

muscle and heart revealed that, while no phenotype was evident

at baseline, both tissues exhibited a blunted bioenergetic

response to physiological stressors (exercise and adrenergic

stimulation, respectively) (Kwong et al., 2015; Luongo et al.,

2015; Pan et al., 2013). We chose cold as the relevant stressor

in the present study and performed global transcriptional

profiling on BAT from control and BAT-Mcu-KO animals

exposed to RT or 4�C for 6 h. As a positive control for cold expo-

sure, we confirmed that UCP1, PGC1A, and DIO2 were strongly

upregulated in 4�C exposed mice in a genotype-independent

manner (Ye et al., 2013); in contrast, MCU was strongly reduced

in BAT-Mcu-KO animals but was transcriptionally unaffected by

temperature (Figures 3A and 3B).

We observed relatively few significant transcriptional changes

resulting from MCU loss at either RT or 4�C (Figures 3D and

3E). Besides Mcu, we identified three genes that were differen-

tially expressed by genotype at both RT and 4�C: ELMOD2,

TBC1D9, and GSTA3, all of which are upregulated in BAT-Mcu-

KO BAT (STAR Methods). Elmod2 and Tbc1d9 are located in

close proximity toUcp1 in the mouse genome and are likely over-

expressed due to their presence in the UCP1-Cre transgene.

Gsta3 encodes a cytosolic enzyme that participates in the biosyn-

thesis of steroid hormones (Johansson andMannervik, 2001; Raf-

falli-Mathieu et al., 2008). Its significance in brown fat and its

connection to mitochondrial calcium homeostasis are unclear.

In stark contrast to the mild effect of genotype, we found that

over 15% of detected genes were significantly up or downregu-

lated by at least 2-fold between RT and 4�C (Figures 3D and 3F).

Principal component analysis (PCA) yielded robust clustering of

samples by temperature along the first principal component

axis, confirming just how pervasive and strong the thermogenic

gene expression program is (Figure 3C). Pgc1a, Dio2, and Ucp1

all scored within the top 100 genes in the loading of principal

component 1 (STAR Methods).

When we sorted the genes enriched at 4�C in order of signif-

icance, we found that the transcription factor ATF4 was among

the top 10 most significantly enriched genes in control and

Mcu-KO BAT (Figure 3F) (Han et al., 2013). ATF4 is a highly

studied molecule that orchestrates the integrated stress

response (ISR), a gene expression program activated in

response to a wide variety of perturbations including endo-

plasmic reticulum (ER) unfolded protein stress, amino acid or

glucose deprivation, and severe hypoxia (Han et al., 2013; Har-

ding et al., 2003; Pakos-Zebrucka et al., 2016). To investigate

whether the canonical ISR was induced by cold in our experi-

ment, we performed gene set enrichment analysis (GSEA) to

identify hallmark gene sets and promoter motifs enriched at
(G) MSigDB hallmark genesets enriched at 4�C in �Cre or +Cre mice.

(H) DNAmotifs enriched at 4�C in�Cre or +Cremice. Red points indicatemotifs an

t test metric. Samples were permuted 1,000 times to evaluate significance.

Results are reported as mean + SEM. Statistical significance is indicated as *p <
4�C compared to RT (Mootha et al., 2003; Subramanian et al.,

2005). The hypoxia and unfolded protein response hallmark

gene sets, both of which contain reported ATF4 targets (Bao

et al., 2016; Han et al., 2013), were significantly enriched in

both control and BAT-Mcu-KO mice (Figure 3G), as were all

four motifs annotated as binding to ATF4 or its downstream

target ATF3 (Figure 3H).

Cold Induces the ATF4-Associated Integrated Stress
Response in BAT
In order to validate that the canonical ISR is operative in BAT at

4�C, we first confirmed that several ATF4 target genes were

robustly upregulated by cold in an independent cohort of mice

(Figure 4A). We additionally found that treatment of differentiated

immortalized brown adipocytes with NE induced both un-

coupled respiration and upregulation of ATF3 within 4 hours,

suggesting that adrenergic stimuli may induce the ISR in a cell-

autonomous manner (Figures S3A–S3D).

ATF4 is acutely regulated at the translational level by the initi-

ation factor eIF2a, which is itself activated upon phosphorylation

by one of four protein kinases (for review, see Pakos-Zebrucka

et al., 2016). Although the phosphorylated form of eIF2a broadly

represses translation initiation, it also promotes skipping of a

uORF in the ATF4 mRNA, leading to increased translation of

the main coding region and rapid accumulation of ATF4 protein

(Dey et al., 2010; Vattem andWek, 2004). Consistently, we found

that cold exposure led to accumulation of ATF4 at the protein

level (Figure 4B). Interestingly, ATF4 accumulation was sup-

pressed when mice were given ad libitum access to food over

the course of the cold exposure period, regardless of whether

animals were fasted beforehand (Figures S4A and S4B).

What purpose does cold induction of the ISR serve in BAT? To

address this question, we noted that two genes known to be

induced as part of the ISR are the cytokines FGF21 and

GDF15 (Jousse et al., 2007; Khan et al., 2017; Kim et al.,

2013). Both cytokines have been demonstrated to promote

glucose tolerance, insulin sensitivity, resistance to diet-induced

obesity, and upregulated expression of lipolysis and beta-oxida-

tion genes in white and beige fat (Chrysovergis et al., 2014;

Chung et al., 2017; Kharitonenkov et al., 2005; Kim et al., 2013;

Fisher et al., 2012; Xiong et al., 2017). Furthermore, cold expo-

sure has been shown to induce FGF21 transcription in BAT after

4–6 h and a 2-fold rise in circulating FGF21 levels after 24 h,

raising the possibility that FGF21maymediate the pleiotropic ef-

fects of BAT on systemic metabolism (Chartoumpekis et al.,

2011; Hondares et al., 2011). We reasoned that, if ISR activation

in BAT serves such a purpose, then both circulating FGF21 and

GDF15 should be raised after 6 h of cold exposure. Indeed, we

found that circulating FGF21 and GDF15 levels increased by

nearly 5-fold and 2-fold, respectively (Figure 4C). To our knowl-

edge, cold-induction of circulating GDF15 has not previously

been reported. In order to determine whether any tissues be-

sides BAT secrete significant quantities of FGF21 and GDF15
notated as ATF3 or ATF4 targets. Genes were rank ordered using the Student’s

0.05, **p < 0.01, ***p < 0.001 (Student’s t test).
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Figure 4. Cold Challenge Activates the Integrated Stress Response in Brown Fat

(A) qPCR of transcripts corresponding to the thermogenic gene expression or the integrated stress response (ISR) in wild type mice housed for 6 h at RT or 4�C
(n = 6 mice per group).

(B) BAT ATF4 protein levels in fasting mice housed for 6 h at RT or 4�C.
(C) Circulating levels of FGF21 and GDF15 in mice starved for 6 h at RT or 4�C (n = 7 mice per group).

Results are reported as mean + SEM. Statistical significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).
during cold exposure, we measured transcript levels of these

and other ISR target genes in a panel of tissues known to be

physiological sources of either hormone (Estall et al., 2009;

Kempf et al., 2006; Khan et al., 2017) (Figure S4C). Among the

tissues examined, BAT demonstrated by far the strongest tran-

scriptional upregulation of FGF21 and GDF15. While we cannot

rule out the possibility that other tissues contribute to the circu-

lating FGF21 and GDF15 pools during cold exposure, these re-

sults suggest that the increase in both hormones may be primar-

ily attributable to their production in BAT. Collectively, our

observations indicate that the ISR may support many of the

endocrine functions of BAT implicated in modulating systemic

metabolism; furthermore, in addition to FGF21, thermogenic

BAT may serve as an important physiological source of GDF15.

DISCUSSION

The current study indicates that the mitochondrial calcium uni-

porter is largely dispensable for BAT bioenergetics: the mouse

model we used completely lacks uniporter activity in BAT, but dis-

plays no obvious abnormalities in cold tolerance, diet-induced

obesity, BAT PDH phosphorylation, or BAT transcriptome-wide

gene expression at baseline or in response to acute cold chal-

lenge. Although not the goal of the current study, examining the

global gene expression response to cold led us to identify a robust

induction of the ISR inBAT inwild type animals.While determining

the full functionality of the ISR in thermogenic BAT is beyond the

scope of this study, we speculate that it may support the endo-

crine role of BAT by strongly inducing secretion of cytokines

such as FGF21 and GDF15.

The uniporter has already been demonstrated to support exer-

cise tolerance in skeletal muscle and sympathetic contractility

stimulation in heart, both of which are highly energy-demanding

processes linked to adrenergic signaling (Kwong et al., 2015;

Luongo et al., 2015; Pan et al., 2013). Given that non-shivering

thermogenesis is another such process, combined with the

fact that a previous study identified the uniporter current to be

extremely high in BAT (Fieni et al., 2012), we were surprised to

discover the minimal role of the uniporter in BAT bioenergetics.

The study of various MCU knockout models has implicated a

crucial role for genetic background in unmasking uniporter-asso-
1370 Cell Reports 27, 1364–1375, April 30, 2019
ciated phenotypes. The most dramatic example is, of course, the

embryonic lethality of inbred full-body MCU knockout mice

compared with the mild phenotype of the CD1 MCU knockout

model (Murphy et al., 2014). Because we observed that MCU

knockout results in complete ablation of uniporter activity in

BAT, it is clear that the function ofMCU is non-essential in this tis-

sue on the C57BL/6 background.

While the uniporter is thought to mediate the only rapid mito-

chondrial calcium uptake pathway, it is certainly not the only

means by which mitochondrial calcium influx can occur. For

example, a mechanism that can theoretically sustain mitochon-

drial calcium homeostasis in the absence of uniporter function is

reversal of the IMM sodium-calcium exchanger, NCLX, which

ordinarily serves as the primary mitochondrial calcium efflux

pathway (De Marchi et al., 2014; Palty et al., 2010). NCLX

reversal may therefore play a greater role in mitochondrial cal-

cium homeostasis than the uniporter in thermogenic BAT.

It is noteworthy that PDH is acted upon by two phosphatases:

PDP1 and PDP2, the latter of which is calcium-insensitive

(Huang et al., 1998). Previous studies (Su et al., 2002) and our

own RNA sequencing (RNA-seq) data indicate that in BAT,

PDP2 is over 10-fold more abundant than PDP1 at RT, and

over 20-fold more abundant at 4�C (STAR Methods). It is there-

fore reasonable to expect that calcium exerts relatively little con-

trol over the PDH phosphorylation state in BAT, consistently with

our results (Figures 2E and 2F).

Given that BAT mitochondria contain substantially less MCU

and EMRE protein than skeletal muscle mitochondria (Figures

S1A and S1B), it is unclear why Fieni et al. (2012) observed

that mitoplasts from these two tissues harbor equally high cur-

rent densities. Notably, the BATmitoplasts used for patch clamp

experiments in this study were isolated frommice lacking UCP1,

suggesting that the high uniporter current density in BAT may be

specific to this genotype; indeed, a recent quantitative prote-

omics study demonstrated that MCU, EMRE, MICU1, and

MICU2 are all upregulated by �2-fold in UCP1 knockout BAT

(Kazak et al., 2017).

Importantly, an additional use for the BAT-Mcu-KOmodel that

we have not yet explored is to examine the role of MCU in beige

fat, a UCP1-expressing cell type dispersed primarily throughout

the inguinal fat pad (Wu et al., 2012). Unlike interscapular BAT,



the abundance of beige fat is relatively low at room temperature

and is strongly increased following multi-day cold exposure

(Young et al., 1984) or chronic, repeated administration of a b3-

adrenergic agonist (Bertholet et al., 2017). Recent studies have

identified multiple UCP1-independent pathways by which beige,

but not brown, adipocytes can generate heat (Bertholet et al.,

2017; Kazak et al., 2015), including futile cycling of calcium

across the endoplasmic reticulum membrane (Ikeda et al.,

2017); it is thus conceivable that MCU plays a substantive role

in this tissue’s bioenergetics despite its dispensability in BAT.

An unexpected finding from our work is that cold powerfully in-

duces the ATF4-dependent ISR in BAT. Relatively few studies

have addressed the dynamics and functional significance of

the ISR in this tissue (Bettaieb et al., 2012; Liu et al., 2017; Ma-

mady and Storey, 2008; Sekine et al., 2016; Seo et al., 2009;

Wang et al., 2010, 2013), and the interplay between the ISR

and the thermogenic gene program is poorly understood. One

recent study showed that mice lacking the mitochondrial Ser/

Thr-specific protein phosphatase PGAM5 have increased levels

of phospho-eIF2a and FGF21 in BAT following a 12-h fast and

3–6 h cold exposure; cold-induction of FGF21 mRNA was also

blunted by treatment with ISRIB, which blocks the downstream

effects of eIF2a phosphorylation (Anders and Huber, 2010; Se-

kine et al., 2016). Interestingly, while fasting plus cold also

induced FGF21 transcription in wild type BAT, only an �2-fold

change in FGF21 mRNA was observed relative to fasted mice

at RT. Our study validates and extends this finding by showing

that acute cold exposure induces ATF4 protein accumulation,

reproducibly engages the full ISR at a genome-wide level, and

leads to a rapid and substantial increase of FGF21 and GDF15

in the circulation. We have also shown that fasting animals prior

to cold exposure is not necessary for induction of the ISR in BAT,

although feeding during cold exposure suppresses ATF4 accu-

mulation; this suggests that the ISR is likely to be operative in

BAT under normal physiological circumstances, and not just in

the controlled setting of a 12-h fast. Furthermore, in our hands,

a 6-h cold exposure increases FGF21 mRNA levels in BAT by

up to 50-fold (STAR Methods).

Three other studies have directly explored the connection be-

tween ATF4 and BAT thermogenesis, all utilizing a full-body Atf4

knockout mouse model (Seo et al., 2009; Wang et al., 2010,

2013). Surprisingly, these mice are smaller and have a lower

body fat percentage than wild type mice; they are more insu-

lin-sensitive and have higher resting energy expenditure both

on chow and high-fat diets; they better maintain core body tem-

perature during a 3-h cold challenge; and they exhibit mild upre-

gulation of UCP1, PGC1A, select lipolysis genes, and select

b-oxidation genes in BAT. One of these studies examined gene

expression in wild type mice in response to a 7-h cold challenge

and surprisingly found ATF4 levels to slightly decrease at 4�C
(Wang et al., 2013). The same study proposed a model in which

ATF4 displaces the cAMP-responsive transcription factor CREB

from the PGC1A promoter, thereby repressing cold-induced

PGC1A upregulation. Our results show that ISR activation in

response to cold is highly dependent on the presence or

absence of food (Figures S4A and S4B); this or other environ-

mental factors may explain the discrepancy in ATF4 dynamics

between the aforementioned study and ours.
Further work will be required to fully understand the interplay

between the ISR, ATF4, FGF21, GDF15, and the thermogenic

gene program in BAT. Additional studies will also be required

to precisely delineate the conditions under which the ISR is acti-

vated by cold in BAT, particularly given that this effect is highly

dependent on feeding status (Figures S4A and S4B). Notably,

ATF4 signaling is also upregulated in multiple cellular and animal

models of mitochondrial dysfunction (Bao et al., 2016; Quirós

et al., 2017; Tyynismaa et al., 2010), including forced uncoupling

via FCCP treatment (Quirós et al., 2017) or ectopic UCP1 expres-

sion (Keipert et al., 2014; Ost et al., 2015). Consistently, both

FGF21 and GDF15 have emerged as promising blood bio-

markers for human mitochondrial disorders (Davis et al., 2013;

Lehtonen et al., 2016; Montero et al., 2016; Yatsuga et al.,

2015). Future efforts to decipher the mechanism and physiolog-

ical consequences of cold-induced ATF4 signaling in BAT may

therefore help elucidate the role of the ISR in mitochondrial

disease.
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Connolly, E., Nånberg, E., and Nedergaard, J. (1984). Na+-dependent, alpha-

adrenergic mobilization of intracellular (mitochondrial) Ca2+ in brown adipo-

cytes. Eur. J. Biochem. 141, 187–193.

Csordás, G., Golenár, T., Seifert, E.L., Kamer, K.J., Sancak, Y., Perocchi, F.,

Moffat, C., Weaver, D., de la Fuente Perez, S., Bogorad, R., et al. (2013).

MICU1 controls both the threshold and cooperative activation of the mito-

chondrial Ca2+ uniporter. Cell Metab. 17, 976–987.

Davis, R.L., Liang, C., Edema-Hildebrand, F., Riley, C., Needham,M., and Sue,

C.M. (2013). Fibroblast growth factor 21 is a sensitive biomarker of mitochon-

drial disease. Neurology 81, 1819–1826.

De Marchi, U., Santo-Domingo, J., Castelbou, C., Sekler, I., Wiederkehr, A.,

and Demaurex, N. (2014). NCLX protein, but not LETM1, mediates mitochon-

drial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and

modulating matrix redox state. J. Biol. Chem. 289, 20377–20385.

Deluca, H.F., and Engstrom, G.W. (1961). Calcium uptake by rat kidney mito-

chondria. Proc. Natl. Acad. Sci. USA 47, 1744–1750.

Denton, R.M. (2009). Regulation of mitochondrial dehydrogenases by calcium

ions. Biochim. Biophys. Acta 1787, 1309–1316.

Denton, R.M., McCormack, J.G., Rutter, G.A., Burnett, P., Edgell, N.J., Moule,

S.K., and Diggle, T.A. (1996). The hormonal regulation of pyruvate dehydroge-

nase complex. Adv. Enzyme Regul. 36, 183–198.

Dey, S., Baird, T.D., Zhou, D., Palam, L.R., Spandau, D.F., and Wek, R.C.

(2010). Both transcriptional regulation and translational control of ATF4 are

central to the integrated stress response. J. Biol. Chem. 285, 33165–33174.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut,

P., Chaisson,M., andGingeras, T.R. (2013). STAR: ultrafast universal RNA-seq

aligner. Bioinformatics 29, 15–21.
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FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance

disorders. Neurology 87, 2290–2299.

Lewis-Smith, D., Kamer, K.J., Griffin, H., Childs, A.-M., Pysden, K., Titov, D.,

Duff, J., Pyle, A., Taylor, R.W., Yu-Wai-Man, P., et al. (2016). Homozygous

deletion in MICU1 presenting with fatigue and lethargy in childhood. Neurol.

Genet. 2, e59.

Liu, Z., Gu, H., Gan, L., Xu, Y., Feng, F., Saeed, M., and Sun, C. (2017).

Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced

apoptosis in mice brown adipose tissue. Oncotarget 8, 9267–9279.

Logan, C.V., Szabadkai, G., Sharpe, J.A., Parry, D.A., Torelli, S., Childs, A.M.,

Kriek, M., Phadke, R., Johnson, C.A., Roberts, N.Y., et al.; UK10K Consortium

(2014). Loss-of-function mutations in MICU1 cause a brain and muscle disor-

der linked to primary alterations inmitochondrial calcium signaling. Nat. Genet.

46, 188–193.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lowell, B.B., S-Susulic, V., Hamann, A., Lawitts, J.A., Himms-Hagen, J.,

Boyer, B.B., Kozak, L.P., and Flier, J.S. (1993). Development of obesity in

transgenic mice after genetic ablation of brown adipose tissue. Nature 366,

740–742.

Luongo, T.S., Lambert, J.P., Yuan, A., Zhang, X., Gross, P., Song, J., Shan-

mughapriya, S., Gao, E., Jain, M., Houser, S.R., et al. (2015). TheMitochondrial

Calcium Uniporter Matches Energetic Supply with Cardiac Workload during

Stress and Modulates Permeability Transition. Cell Rep. 12, 23–34.

Lynch, G.S., and Ryall, J.G. (2008). Role of beta-adrenoceptor signaling in

skeletal muscle: implications for muscle wasting and disease. Physiol. Rev.

88, 729–767.
Cell Reports 27, 1364–1375, April 30, 2019 1373

http://refhub.elsevier.com/S2211-1247(19)30468-1/sref32
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref32
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref32
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref32
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref33
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref33
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref34
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref34
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref34
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref34
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref35
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref35
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref35
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref35
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref36
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref36
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref36
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref36
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref36
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref37
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref37
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref37
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref38
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref38
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref38
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref39
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref39
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref39
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref39
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref40
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref40
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref40
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref41
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref41
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref41
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref41
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref42
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref42
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref42
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref43
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref43
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref43
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref43
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref44
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref44
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref44
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref44
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref45
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref45
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref45
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref45
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref45
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref46
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref46
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref46
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref46
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref47
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref47
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref47
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref47
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref48
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref48
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref48
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref48
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref49
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref49
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref49
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref49
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref50
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref50
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref50
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref50
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref51
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref51
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref51
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref51
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref52
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref52
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref53
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref53
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref53
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref54
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref54
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref54
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref54
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref55
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref55
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref55
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref56
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref56
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref56
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref56
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref57
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref57
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref57
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref58
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref58
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref58
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref59
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref59
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref59
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref59
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref60
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref60
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref60
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref60
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref61
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref61
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref61
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref62
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref62
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref62
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref62
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref62
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref63
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref63
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref64
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref64
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref64
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref64
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref65
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref65
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref65
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref65
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref66
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref66
http://refhub.elsevier.com/S2211-1247(19)30468-1/sref66


Mallilankaraman, K., Doonan, P., Cárdenas, C., Chandramoorthy, H.C., M€uller,

M., Miller, R., Hoffman, N.E., Gandhirajan, R.K., Molgó, J., Birnbaum, M.J.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal against MCU Cell Signaling Technologies Cat#14997; RRID: AB_2721812

Rabbit monoclonal against MICU1 Cell Signaling Technologies Cat#12524; RRID: AB_2797943

Rabbit polyclonal against MICU2 Bethyl Custom synthesized

Rabbit polyclonal against EMRE Bethyl Custom synthesized

Mouse monoclonal against ATP5A Abcam Cat#AB14748; RRID: AB_301447

Rabbit polyclonal against LRPPRC Sigma Cat#SAB2700419

Rabbit polyclonal against VDAC Cell Signaling Technologies Cat#4866; RRID: AB_2272627

Rabbit polyclonal against Actin Cell Signaling Technologies Cat#4967

Rabbit monoclonal against Beta-Tubulin Cell Signaling Technologies Cat#2128

Mouse monoclonal against PDH Thermo Fisher Cat#459400

Rabbit polyclonal against Phospho-PDH (S293) EMD Millipore Cat#ABS204

Rabbit polyclonal against Phospho-PDH (S300) Calbiochem Cat#AP1064

Rabbit monoclonal against ATF-4 Cell Signaling Technologies Cat#11815; RRID: AB_2616025

Chemicals, Peptides, and Recombinant Proteins

Phosphate buffered saline (PBS) Thermo Fisher Cat# 10010023

Sucrose Sigma Cat# S0389

HEPES Sigma Cat# H3375

EGTA Sigma Cat# E3889

KOH Sigma Cat# P5958

RIPA Buffer with EDTA and EGTA Boston BioProducts Cat# BP-115DG

Quick Start Bradford 1x Dye Reagent Bio-Rad Cat# 5000205

Rodent High Fat Diet Research Diets D12492

Trizma� hydrochloride (Tris-HCl) Sigma Cat# T3253

Trizma� BASE (Tris base) Sigma Cat# 93362

Rotenone Sigma Cat #R8875

Guanosine 50-diphosphate [GDP] disodium salt Abcam Cat# 7415-69-2

Bovine serum albumin (fatty acid free) Sigma Cat# A8806

Oregon Green 488 BAPTA-6F, hexapotassium salt Thermo Fisher Cat# O23990

sn-Glycerol 3-phosphate

bis(cyclohexylammonium) salt

Sigma Cat# G7886

Calcium chloride Sigma Cat# C1016

Tetramethylrhodamine methyl ester (TMRM) Thermo Fisher Cat# T668

cOmplete ETDA-free protease inhibitor cocktail Sigma Cat# 11873580001

Protease/Phosphatase Inhibitor Cocktail Cell Signaling Technology Cat# 5872S

SDS sample buffer (Laemmli) Boston BioProducts Cat# BP-111R

QIAzol Lysis Reagent QIAGEN Cat# 79306

Chloroform Sigma Cat# 288306

QIAGEN buffer RLT QIAGEN Included in RNeasy Mini Kit

100% Ethanol Decon Labs Cat# 2716

GIBCO DMEM, high glucose Thermo Fisher Cat# 11965092

GIBCO Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Cat# 15140122

GIBCO GlutaMAX Supplement Thermo Fisher Cat# 35050061

Insulin Sigma Cat# I5500

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

3,30,5-Triiodo-L-thyronine sodium salt (T3) Sigma Cat# T6397

Dexamethasone Sigma Cat# D4902

3-Isobutyl-1-methylxanthine (IBMX) Sigma Cat# I5879

Indomethacin Sigma Cat# I7378

Dulbecco’s Phosphate-Buffered Saline (DPBS) Thermo Fisher Cat# 14190136

Formalin solution, neutral buffered, 10% Sigma Cat# HT501128

Isopropanol Sigma Cat# I9516

Oil Red O Sigma Cat# O0625

Hematoxylin Solution, Harris Modified Sigma Cat# HHS16

Critical Commercial Assays

RNeasy Mini Kit QIAGEN Cat# 74104

SuperScript� III First-Strand Synthesis SuperMix

for qRT-PCR

Thermo Fisher Cat# 11752050

TaqMan Gene Expression Master Mix Thermo Fisher Cat# 4369016

Mouse/Rat FGF-21 Quantikine ELISA Kit R&D Systems Cat# MF2100

Mouse/Rat GDF-15 Quantikine ELISA Kit R&D Systems Cat# MGD150

Seahorse XF24 Extracellular Flux Analyzer Seahorse Bioscience https://www.agilent.com/en/products/

cell-analysis/seahorse-analyzers

Deposited Data

RNA-seq results generated in this manuscript, raw

and processed

NCBI Gene Expression

Omnibus

http://www.ncbi.nlm.nih.gov/geo, query GEO:

GSE119964

Experimental Models: Cell Lines

DE-2-3 immortalized brown adipocytes Gift from Dr. Bruce

Spiegelman

N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Lab Cat# 000664

Mouse: B6FVB-Tg(UCP1-Cre)1Evdr/J The Jackson Lab Cat# 024670

Oligonucleotides

MCU TaqMan Probe Thermo Fisher Mm01168773_m1

UCP1 TaqMan Probe Thermo Fisher Mm01244861_m1

PPARGC1A (PGC1A) TaqMan Probe Thermo Fisher Mm01208835_m1

DIO2 TaqMan Probe Thermo Fisher Mm00515664_m1

ATF4 TaqMan Probe Thermo Fisher Mm00515325_g1

ATF3 TaqMan Probe Thermo Fisher Mm00476033_m1

MTHFD2 TaqMan Probe Thermo Fisher Mm00485276_m1

CBS TaqMan Probe Thermo Fisher Mm00460654_m1

CTH TaqMan Probe Thermo Fisher Mm00461247_m1

TRIB3 TaqMan Probe Thermo Fisher Mm00454879_m1

VEGFA TaqMan Probe Thermo Fisher Mm01281449_m1

ASNS TaqMan Probe Thermo Fisher Mm00803785_m1

HPRT TaqMan Probe Thermo Fisher Mm03024075_m1

Recombinant DNA

BAC RP23-371B1 (LB Stab) BACPAC Resources RP23-371B1

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.

html

STAR 2.4.0j Picelli et al. (2014) https://github.com/alexdobin/STAR

HTSeq Dobin et al. (2013) https://github.com/simon-anders/htseq
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 Anders et al. (2015) https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

Gene Set Enrichment Analysis (GSEA) Mootha et al. (2003);

Subramanian et al. (2005)

http://software.broadinstitute.org/gsea/index.jsp
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, V.K.M.

(vamsi@hms.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Mouse experiments were performed according to procedures approved by the Massachusetts General Hospital Institutional Animal

Care and Use Committee. All mice were housed in groups of up to 5 animals in a room temperature facility with 12-hour light and dark

cycles, andwere provided access to a standard rodent chow diet. B6.FVB-Tg(Ucp1-cre)1Evdr/J (UCP1-Cre) mice described in Kong

et al. (2014) were obtained from The Jackson Laboratory. All experimental animals were obtained by breeding MCU[fl/fl] mice with

MCU[fl/fl];UCP1-Cre mice to yield a 1:1 ratio of progeny harboring zero or one copy of the UCP1-Cre transgene. Each experiment

was performed using sex- and age-matched mice; animals used for cold tolerance and RNA-seq experiments were males at

8-12 weeks of age.

METHOD DETAILS

Generation of MCUfl/fl Mouse Line
BAC RP23-371B1 was purchased from BacPac Resources and was modified to flank exon 2 of Mcu with LoxP sites using recom-

bineering as described (Sharan et al., 2009). ES cells from a mixed genetic background (129/BL6) were injected with the modified

BAC (Figure S2) in the Beth Israel Deaconess Medical Center Transgenic Core Facility. Neomycin resistant ES cells were further

screened with PCR and Southern blotting. ES cells with correct targeting were used to generate MCUfl/fl mice. MCUfl/fl mice were

then crossed with wild-type C57BL/6J until �95% background homogeneity was achieved by single nucleotide polymorphism

(SNP) analysis (The Jackson Laboratory).

Isolation of Mouse Tissue Mitochondria
Crudemitochondria isolation was performed essentially as described by Fieni et al. (2012), with all steps performed at 0–4�Cand BAT

harvested from the interscapular region. Briefly, mice were sacrificed by CO2 asphyxiation followed by cervical dislocation. Tissues

were dissected immediately, rinsed briefly in ice-cold PBS, and immersed in 10mL ice-cold isolation buffer (250mM sucrose, 10mM

HEPES, 1mM EGTA, pH 7.25 with KOH). Tissues were then finely minced and homogenized with six slow strokes of a Potter-Elveh-

jem homogenizer rotating at 280 (liver) or 600 (brown adipose tissue, skeletal muscle, kidney, heart) rpm. To increase mitochondrial

yield, the homogenate was centrifuged at 700g for 5 mins, and the resulting nuclear/unbroken cell pellet was resuspended in the

same supernatant and homogenized again as above. The homogenate was then centrifuged at 700g for 10mins, and the supernatant

was collected and centrifuged at 8,500g for 10 mins. The resulting mitochondrial pellet was rinsed with 1mL isolation buffer and re-

suspended in 5mL isolation buffer. The 700g and 8,500g centrifugation steps were then repeated, and the resulting mitochondrial

pellet was resuspended in approx. 200 mL isolation buffer. Mitochondrial protein content was measured by lysing a small sample

in RIPA buffer and performing a Bradford assay.

Cold Exposure and Body Temperature Measurements
Age and sex-matched animals were individually housed at 4�C for up to six hours in pre-cooled cages without bedding, with ad libitum

access to pre-cooled water. Animals at 4�C did not have access to food unless otherwise indicated; if food was provided, it was pre-

cooled to 4�C overnight. Body temperature was measured rectally at indicated time points using a Physitemp BAT-12 thermometer

outfitted with a RET-3 probe. All animals used for cold tolerance and RNA-seq experiments were males at 8-12 weeks of age.

High Fat Diet
Age and sex-matched animals at 6-10 weeks of age were housed with 1-2 animals per cage, and standard chowwas replaced with a

diet containing 60% kcal from fat (Research Diets formula D12492). Animal weights and average food intake were measured by hand

twice weekly at approx. the same time of day.
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BAT Mitochondrial Calcium Uptake Measurements
BAT mitochondrial calcium uptake measurements were performed according to Al-Shaikhaly et al. (1979). 30 mg of crude BAT mito-

chondria in isolation buffer was centrifuged at 8,500g for 10 mins at 4�C, and the resulting pellet was resuspended in 150 mL calcium

uptake buffer (125mM sucrose, 20mM Tris-HCl, pH 7.2 with Tris base) supplemented with 2 mM rotenone, 1mM GDP, 0.1% bovine

serum albumin (fatty acid free), and 1 mM membrane impermeable Oregon Green BAPTA-6F. Immediately prior to calcium uptake

measurement, the medium was supplemented with 5mM L-glycerol-3-phosphate and mixed by gentle agitation. Fluorescence

was monitored with a PerkinElmer Envision plate reader before and after injection of 50 mM CaCl2 using FITC filter sets (Ex485/

Em535), with a 0.5 s measuring interval. Calcium uptake rates were calculated using the linear fit of uptake curves between 40-60 s.

BAT Mitochondrial Oxygen Consumption Measurements
30 mg of BAT crude mitochondria in isolation buffer was centrifuged at 8,500g for 10 mins at 4�C, and the resulting pellet was resus-

pended in calcium uptake buffer (125mM sucrose, 20mM Tris-HCl, pH 7.2 with Tris base) supplemented with 0.1% bovine serum

albumin (fatty acid free) and 0.5uM tetramethylrhodamine methyl ester. Mitochondria were then added to a well-stirred cuvette at

25�C to reach 500 mL total volume. At indicated time points 1mM L-glycerol-3-phosphate and 1mMGDP were added. O2 consump-

tion and membrane potential were measured simultaneously using a custom spectrophotometer outfitted with an Ocean Optics

benchtop NeoFox-GT phase fluorimeter, as previously described (Gohil et al., 2013).

Western Blotting
Animals were sacrificed by CO2 asphyxiation followed by cervical dislocation. Tissues were immediately harvested and snap frozen

in liquid N2. For preparation of protein lysates, 1 BAT depot (or equivalent volume of another tissue) was immersed in approx. 300 mL

ice-cold RIPA buffer supplemented with either cOmplete EDTA-free protease inhibitor cocktail or Protease/Phosphatase Inhibitor

Cocktail. The tissuewas then lysedwith two 5mmstainless steel beads using aQIAGENTissueLyser for 2mins at 25 Hz. The resulting

homogenate was centrifuged for 10 mins at maximum speed at 4�C, and the supernatant was centrifuged a second time to remove

residual insoluble material. Protein content of the resulting clarified lysate was determined using a Bradford assay. Appropriate vol-

umes of lysate were boiled for 5mins in the presence of SDS sample buffer, resolved on Tris-Glycine SDS-PAGE gels, and transferred

to PVDF membranes for western blotting. All antibodies used are listed in the key resources table.

RNA isolation from BAT
Animals were sacrificed by CO2 asphyxiation followed by cervical dislocation, and tissues were immediately harvested and snap

frozen in liquid N2. Frozen BAT samples were homogenized in 1mL Qiazol per 100mg tissue using the QIAGEN TissueRuptor II.

The homogenate was mixed thoroughly with chloroform (1:5 chloroform:homogenate), incubated for 3 mins at room temperature,

and centrifuged at 12,000g for 15 mins at 4�C, and 100 mL of the resulting aqueous phase was added to 350 mL QIAGEN buffer

RLT plus 250 mL of 100% ethanol. The resulting mixture was transferred to a column from the QIAGEN RNeasy Mini Kit, and RNA

was purified according to the manufacturer’s protocol.

Quantitative Real-Time PCR
RNAwas reverse transcribed using the SuperScript III First-Strand Synthesis SuperMix Kit according to themanufacturer’s protocol.

Quantitative real-time PCR (qPCR) was performed using TaqMan assays; all probe IDs are listed in the key resources table. Relative

gene expression was calculated as 2-DDCT, where HPRT was used as the housekeeping gene for normalization.

RNA-seq
RNA-sequencing libraries were prepared by the Broad Technology Labs at the Broad Institute based on the Smart-seq2 protocol (Pi-

celli et al., 2014) and sequenced on an Illumina NextSeq 500 instrument to generate 2x25bp paired-end reads. The reads were aligned

to the mouse genome (mm10, with gencode M7 annotations) using STAR 2.4.0j (default parameters) (Dobin et al., 2013). Counts of

reads uniquely mapping within exonic regions of annotated genes (irrespective of strand) were collated using HTSeq (Anders et al.,

2015). 14,651 geneswith at least 8 readsmapping to them in at least 6 of the samples were retained for differential expression analysis.

This was performed in R using DESeq2 (Love et al., 2014) and the design formula�Genotype + Temperature +Genotype:Temperature.

Where gene expression levels are reported, they represent normalized read counts following application of the estimateSizeFactors

function, which implements the median ratio method. Where log2 fold-changes and p values are reported, they represent the result

of the Wald test. P values are adjusted with the method of Benjamini-Hochberg. Further data analysis based on the normalized

read counts was performed in MATLAB. Gene Set Enrichment Analysis (GSEA) was performed as described in Mootha et al. (2003)

and Subramanian et al. (2005). All sequencing results have been deposited in NCBI GEO with the accession number GSE119964.

Cytokine assays
Mice were sacrificed by CO2 asphyxiation and blood was immediately drawn from the inferior vena cava. To obtain plasma, blood

was incubated in EDTA-treated tubes and centrifuged at 14,000rpm for 10 mins at 4�C. FGF21 and GDF15 were measured from

plasma samples using R&D Systems Quantikine ELISA Kits MF2100 and MGD150, respectively, according to the manufacturer’s

protocols.
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DE-2-3 cell culture and differentiation
DE-2-3 cells were cultured and differentiated essentially as described in Pan et al. (2009) and Shen et al. (2017). Briefly, cells were

passaged in growthmedia consisting of high glucose DMEM supplemented with 10% fetal bovine serum, penicillin and streptomycin

(100 U/mL), and GlutaMAX (2mM). For differentiation, cells were seeded at day�2 in differentiation medium (DM, growth media sup-

plemented with 20nM insulin and 1nM T3) to reach confluence on day 0. On day 0, media was switched to induction media (DM sup-

plemented with 0.5mM IBMX, 0.5 mMdexamethasone, and 0.125mM indomethacin). Media was changed to DM on day 2 and day 4.

Cells were considered to be fully differentiated on day 6, and experiments were performed on day 6-9. For oxygen consumptionmea-

surements, DE-2-3 cells were differentiated in Seahorse XF24 Cell Culture Microplates, and oxygen consumption rates were

measured using a Seahorse XF24 Extracellular Flux Analyzer instrument.

Oil Red O Stain
Oil Red O staining was performed as described in Shen et al. (2017), according to the protocol by Lonza. Briefly, 300mg of Oil Red O

was dissolved in 100mL of 99% isopropanol to prepare Oil Red O stock solution. 30mL Oil Red O Stock solution was thenmixed with

20mL deionized water, incubated for 10 mins at room temperature, and passed through a 0.45 mm filter to yield Oil Red O working

solution. Fully differentiated DE-2-3 cells were gently rinsed with sterile DPBS and fixed for 30-60 mins in 10% formalin. The fixed

cells were then rinsed with sterile water, incubated in 60% isopropanol for 2-5 mins, and incubated in Oil Red O working solution

for 5 mins. The cells were rinsed with water until excess stain was removed, and then incubated for 1 min with hematoxylin counter-

stain. The cells were then rinsed with water until excess stain was removed, and kept under water prior to and during imaging.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical comparisons for low-throughput data were performed as described in the appropriate figure legends using Microsoft

Excel. Significance for Student’s t tests was evaluated using a two-tailed test assuming unequal variances. Statistical analysis of the

RNA-seq data was performed as described in the RNA-seq section of the STAR methods.

DATA AND SOFTWARE AVAILABILITY

Software availability
Source codes for the STAR 2.4.0j (Dobin et al., 2013), HTSeq (Anders et al., 2015), and DEseq (Love et al., 2014) software packages

are freely available for download through the corresponding references. GSEA and MSigDB can be freely accessed through the

Broad Institute website, and is implemented via a graphical user interface. MATLAB is accessible through MathWorks, Inc. on a sub-

scription basis.

Data availability
The accession number for all the sequencing results reported in this paper is GEO: GSE119964. Additional data is available by

request to the lead contact.
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